Spelling suggestions: "subject:"théorie duu cold"" "subject:"théorie duu coli""
1 |
Quelques résultats sur les systèmes d'équations aux dérivées partielles faisant intervenir l'opérateur p-Laplacien.CHAIB, Karim 23 April 2002 (has links) (PDF)
Il a été question dans ce travail, sous la direction de F. de Thélin, de l'étude de certains systèmes d'équations aux dérivées partielles faisant intervenir l'opérateur $p$-Laplacien ($ \Delta_p u = div(|\nabla u|^{p-2} \nabla u) $). Cet opérateur elliptique dégénéré apparaît dans de nombreux problèmes aussi bien en mathématiques fondamentales qu'en sciences expérimentales (écoulement de glacier de montagne, extraction pétrolière, dynamique des populations et d'autres encore). Il généralise l'opérateur Laplacien usuel $ \Delta = \Delta_2 $ dont l'étude a été largement abordée ces dernières décennies. Nous nous sommes attachés à étudier certaines propriétés des solutions de ces systèmes telles que l'existence, l'unicité et la régularité dans des domaines non bornés et en particulier $ \mathbb{R}^N $. Ces résultats ont été obtenus sous des conditions variées portant sur le comportement des termes de réactions qui interviennent dans les problèmes. Dans cette thèse, nous avons généralisé au cas non borné un outil très utilisé pour appréhender des équations aux dérivées partielles de ce type, qui est connu sous le nom d'inégalité de Díaz-Saa. Elle nous a permis d'obtenir des résultats d'existence et d'unicité de solution pour un système sous des conditions du même type que celles de H. Brézis et L. Oswald. En outre, nous avons utilisé le théorème du col et la méthode des sous,sur-solutions pour montrer une condition nécessaire et suffisante d'existence dans le cas sur-homogène et sous-critique et dans le cas sous-homogène. Une partie de cette thèse a aussi été consacrée à l'étude du comportement asymptotique des solutions de tels systèmes dépendant d'un paramètre. Le comportement de ces solutions lorsque le paramètre tend vers l'infini dépend essentiellement du comportement des termes de réactions à l'infini.
|
2 |
SUR LES SYSTEMES ELLIPTIQUES QUASI-LINEAIRES ET ANISOTROPIQUES AVEC EXPOSANTS CRITIQUES DE SOBOLEV.Adriouch, Khalid 13 July 2007 (has links) (PDF)
L'objectif de cette thèse est d'étudier l'existence, la multiplicité et le comportement des solutions positives de systèmes d'équations aux dérivées <br />partielle faisant intervenir le (p,q)-Laplacien ou des opérateurs anisotropiques dans les cas sous-critique et critique.<br /> Dans le 1er chapitre on s' intéresse au système suivant (S):<br />\begin{eqnarray}<br />\left\{\begin{array}{lll}-\Delta_p u&=&\lambda f(x,u,v)\quad\mbox{dans}\quad\Omega,\\<br />-\Delta_q v&=&\mu g(x,u,v)\quad\mbox{dans}\quad\Omega,<br />\end{array}<br />\right.<br />\end{eqnarray}<br />avec $f$ et $g$ présentent des termes sous-critiques en u et v . On a pu construire deux suites de Palais-Smale sur la variété de Nehari convergeant <br />fortement dans $W{1,p}(\Omega)\times W{1,q}(\Omega)$ vers deux solutions distinctes.<br /> Dans le 2ème chapitre, on considère la même classe du système (S) dans le cas critique et dans $\mathbb{R}^N$. A la différence du chapitre 1, dans <br />ce cas on retrouve qu'une seule solution positive et pour $p=q$ on retrouve une seconde solution.<br /> Dans le chapitre 3, on généralise l'étude de Brézis-Nirenberg à une équation et puis à un système critique du type (S). On donne une définition plus générale de la notion de niveau critique.<br /> Le Dernier chapitre traîte d'une nouvelle classe de systèmes d'équations elliptiques anisotropiques (puissance dépend de la direction) avec des termes de réaction de type puissance de façon que l'espace fonctionnel naturel devient un espace de Sobolev anisotrope. On démontre l'existence ainsi que la régularité des solutions faibles du système puis l'existence d'une solution dans le cas où on a une sous et une sur-solution du système.
|
Page generated in 0.0683 seconds