Spelling suggestions: "subject:"théorie dde ginzburglandau"" "subject:"théorie dde ginzburguiano""
1 |
Défauts de vorticité dans un supraconducteur en présence d'impuretésDos Santos, Mickaël 09 December 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage.
|
2 |
Multiscale modeling of multiferroic nanocomposites / Modelisation multi-échelle des nanocomposites multiferroiquesProkhorenko, Sergei 08 September 2014 (has links)
Au cours des dernières décennies, la recherche de nouveaux matériaux multiferroïques nanostructurés avec des propriétés optimisées a conduit à l'élaboration d'une grande variété de modèles théoriques et des approches de simulation. Allant des modèles ab initio capables de décrire les propriétés à la température nulle des composés artificiels monocristallins à des approximations phénoménologiques pour la description des composites à la mésoscopique, ces recherches ont soulevé la question fondamentale de la relation entre la géométrie de la structure des systèmes hétérogènes et les propriétés des leurs transitions de phase. Cependant, malgré des progrès significatifs en la matière,cette question n'a pas encore été élucidée et les relations entre les modèles à différentes échelles ne sont pas entièrement distingués. La présente étude est consacrée à lier l’ensemble des modèles décrivant les matériaux nanocomposites multiferroïques à différentes échelles. Tout d'abord, nous présentons un développement méthodologique de l'approche Hamiltonien effectif couramment utilisé pour étudier les transitions de phase structurales. Les modifications introduites permettent d'étendre cette méthode pour prédire les propriétés à la température finie des systèmes hétérogènes. Le modèle construit est ensuite utilisé pour étudier les propriétés des nanostructures et solutions solides (BiFeO3)(BaTiO3). Recourant à des simulations Monte-Carlo, nous montrons que notre modèle fournit des résultats qui sont en ligne avec les observations expérimentales récentes et qu’il permet de prédire théoriquement les propriétés d'une large gamme de systèmes avec différentes géométries composites. La deuxième partie de l'étude consiste en l'application de la théorie de Ginzburg-Landau des transitions de phase à l’étude des propriétés des multicouches ferroélectriques et ferromagnétiques avec des interfaces épitaxiales. Plus précisément, nous décrivons théoriquement l’effet magnétoélectrique exhibé par les hétérostructures autonomes Pb(Zr0.5 Ti0.5) O3-FeGaB et BaTiO3-FeGaB. Enfin, nous montrons que la géométrie multicouche d'un nanocomposite ferroélectrique et ferromagnétique ouvre la voie à une amélioration radicale du signal de charge de sortie. / During past decades, the search for new nanostructured multiferroic materials with optimized properties has lead to the development of a vast variety of theoretical models and simulation approaches. Spreading from first principles based models able to describe zero-temperature properties of artificial single crystal compounds to phenomenological approximations for composites with mesoscale morphology, these investigations have raised the fundamental question of how the geometry of the structure affects the properties of phase transitions exhibited by heterogeneous systems. However, despite significant progress, the answer to this question still lacks clarity and the bridge connecting models at different scales is not fully constructed. The current study is devoted to linking together models of multiferroic nanocomposite materials applicable at different scales. First, we present a methodological development of effective Hamiltonian approach commonly used to study structural phase transitions. The introduced modifications allow to extend this widely used method to predict finite-temperature properties of compositionally heterogeneous systems. The constructed model is then used to study properties of (BiFeO3)(BaTiO3) nanostructures and solid-solutions. Resorting to Monte-Carlo simulations, we show that our model provides results that are in-line with recent experimental observations and allows to theoretically predict properties of a wide range of systems with different composite geometries. The second part of the study consists inapplication of Landau theory of phase transitions to investigate the properties of ferroelectric-ferromagnetic multilayerswith epitaxial interfaces. Specifically, we theoretically describe the strain-mediated direct ME effect exhibited byfree-standing Pb(Zr0.5 Ti0.5 )O3 -FeGaB and BaTiO3 -FeGaB heterostructures. Finally, we show that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal.
|
3 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
4 |
Défauts de vorticité dans un supraconducteur en présence d’impuretés / Vorticity defects in a superconductor with impuritiesDos Santos, Mickaël 09 December 2010 (has links)
Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage / This thesis is devoted to the mathematical study of some models suggested by the theory of the superconductivity. More specifically, we consider the simplified model of Ginzburg-Landau (without magnetic field) in presence of a Dirichlet or a degree condition. In the first part we treat the existence problem of local minimizers in a multiply connected domain of the plan with prescribed degrees conditions. In the second part, we discuss the effect of a pinning term in the two-dimensional Ginzburg-Landau functional. This part is divided in three chapters. We first consider the situation of a pinning term (depending on the Ginzburg-Landau parameter) which is a simple function and takes a value different to 1 only in a fixed number of subdomains (also called inclusions) whose size tends to zero. We prove that, considering a Dirichlet condition with a non zero degree, the vorticity is quantized and localized inside the inclusions. In the second chapter, we consider the situation of a pinning term without specific structure. We imposed a Dirichlet boundary condition with a null degree. In the last chapter of the second part, we deal with the case of a simple and uniformly distributed pinning term. We impose a Dirichlet boundary condition with a non zero degree. The last part deals with the effect of a simple pinning term (independent of the Ginzburg-Landau parameter) in the three-dimensional Ginzburg-Landau functional. The preliminary results we present allow to understand how the vorticity lines are bent under the effect of the pinning term
|
5 |
Etude théorique de l'état de vortex dans de nouveaux supraconducteurs: MgB2 et PrOs4Sb12Dao, Vu Hung 17 January 2006 (has links) (PDF)
La thèse illustre les influences combinées des anisotropies du gap et du cristal sur les propriétés supraconductrices sous champ magnétique. Afin de décrire la supraconductivité multibande de MgB2, nous dérivons la fonctionnelle de Ginzburg-Landau pour un supraconducteur à deux gaps à partir d'un modèle BCS de couplage faible. L'interaction entre condensats est ainsi décrite par un unique couplage de type Josephson. La théorie à deux gaps permet alors d'expliquer la courbure et l'anisotropie du deuxième champ critique, et la rotation de 30° du réseau de vortex accompagnant l'augmentation du champ magnétique appliqué le long de l'axe c. Par ailleurs, nous étudions la géométrie du réseau de vortex dans le fermion lourd PrOs4Sb12. La prise en compte des corrections non-locales, pour un supraconducteur à cristal Th-tétraédrique avec gap de type s, permet d'expliquer la déformation observée. Les résultats ab initio sur les structures de bandes confirment quantitativement notre analyse.
|
6 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
Page generated in 0.0608 seconds