• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Devenir des propriétés immunomodulatrices des cellules souches mésenchymateuses de la gelée de Wharton au cours de la différenciation chondrocytaire / Become immunomodulatory properties of mesenchymal stem cells of Wharton's jelly during chondrocyte differentiation

Avercenc-Léger, Léonore 27 November 2017 (has links)
Ce travail a pour objet de déterminer les conditions optimales de production de substituts allogéniques capables de combler les lésions cartilagineuses dans le cadre du traitement de l’arthrose. Il s’oriente particulièrement sur la composante cellulaire de ces substituts. L’usage de cellules souches mésenchymateuses issues de cordons ombilicaux (CSM-GW) implique de déterminer quels facteurs obstétricaux, liés à l’environnement direct et indirect des CSM-GW, peuvent influencer leur prolifération ainsi que leur différenciation chondrocytaire. Dans une première partie de ce travail, trois types de facteurs ont été étudiés : les facteurs liés à l’enfant donneur, au déroulement de l’accouchement et de la délivrance, à la grossesse et à la mère. Nos données montrent que les CSM-GW ont des capacités prolifératives améliorées lorsque l’accouchement s’est déroulé à terme et sans complication, avec utilisation de Syntocinon® pendant le travail. Sur la base de ces résultats, nous avons utilisé les CSM-GW les plus efficaces dans le cadre de l’ingénierie du cartilage. Il a ensuite été essentiel d’élucider le profil d’action des CSM-GW dans un contexte allogénique. Le deuxième temps de ce travail a donc consisté à chercher le profil de stimulation le plus performant, au regard de la viabilité des cellules et de l’évolution de la sécrétion des facteurs solubles responsables des propriétés immunomodulatrices des CSM-GW au cours de la différenciation chondrocytaire. Nous avons alors mimé, in vitro et en biomatériaux d’Alginate/Acide hyaluronique (Alg/HA) une telle situation en stimulant les CSM-GW avec différentes doses d’IFN-γ et de TNF-α. Selon nos résultats, la stimulation par IFN-γ et TNF-α sur les CSM-GW en biomatériaux d’Alg/HA est plus efficace lorsque ces deux cytokines sont utilisées conjointement et n’est pas délétère pour la viabilité cellulaire aux concentrations respectives de 20 et 30 ng/mL. Cette double stimulation induit une augmentation de la sécrétion d’IL-6 et de PGE-2 par les CSM-GW, ne modifie pas leur sécrétion de TGF-β, et diminue la sécrétion de VEGF. Nous avons confirmé ces données lors d’une mise en situation fonctionnelle : des cocultures avec des cellules mononucléées de sang périphérique (PBMC) de donneurs sains nous ont permis d’évaluer la réponse des CSM-GW lors d’une situation allogénique. Ces mises en situations allogéniques ont été étudiées à différents temps afin d’évaluer les propriétés immunologiques des CSM-GW au cours du temps passé en biomatériaux. Nos résultats montrent que les CSM-GW peuvent exprimer des molécules HLA-G ainsi qu’IDO, mais ces expressions sont limitées en biomatériaux d’Alg//HA. Les CSM-GW en biomatériaux d’Alg/HA en situation allogénique ne sont pas immunogènes, quel que soit le temps de différenciation. En revanche, leurs capacités immunomodulatrices décroissent au cours du temps et sont plus fortes à J0 et J3 de la différenciation chondrocytaire, ce qui oriente vers une utilisation précoce de ces cellules. Les conclusions de ce travail permettent de (i) sélectionner les cordons idoines à l’ingénierie cellulaire et l’ingénierie du cartilage, (ii) définir les conditions permettant de mimer une situation allogénique in vitro, (iii) connaitre les propriétés immunomodulatrices des CSM-GW au cours de la culture en biomatériaux d’Alg/HA, y compris en situation allogénique / The purpose of this work is to determine the optimal conditions for allogeneic substitutes production, adapted to filling the cartilaginous lesions in osteoarthritis treatment. It focuses on the cellular component of these substitutes. The use of mesenchymal stem cells from umbilical cords (WJ-MSC) involves determining which factors, related to direct and indirect environment of the WJ-MSC, can influence their proliferation and chondrogenic differentiation. In a first part of our work, three types of factors were studied: related to the donor child, the course of labor and delivery, pregnancy and the mother. Our results show that WJ-MSC have enhanced proliferative capacities when coming from full-term birth and without complications, with the use of Syntocinon® during labor. On this basis, we used the most effective WJ-MSC for cartilage engineering. It was then essential to elucidate their action profile in allogeneic context. We stimulated WJ-MSC embedded in Alginate/Hyaluronic Acid (Alg/HA) scaffolds with different concentrations of IFN-γ and TNF-α in order to determine the most effective stimulation profile, with regard to viability of the cells and evolution of immunomodulatory soluble factors secretion. According to our results, the stimulation by IFN-γ and TNF-α on WJ-MSC in Alg/HA scaffolds is more effective when these two cytokines are used together and is not deleterious for cell viability at the concentrations of 20 and 30 ng/mL, respectively. This double stimulation induces an increase in the secretion of IL-6 and PGE-2 by the WJ-MSC, a decrease in the secretion of VEGF and does not modify the secretion of TGF-β. We confirmed these data during a functional study: cocultures with peripheral blood mononuclear cells (PBMC) from healthy donors allowed us to evaluate the response of WJ-MSC in an allogeneic situation. These allogeneic situations have been studied at different times to evaluate the immunological properties of WJ-MSC during the time of chondrogenic differentiation. Our results show that WJ-MSC can express HLA-G molecules as well as IDO, but these expressions are limited in Alg/HA biomaterials. Finally, the WJ-MSC in Alg/HA biomaterials in allogeneic conditions are not immunogenic, regardless of the time of differentiation. On the other hand, their immunomodulatory capacities decrease over time and are stronger at day 0 and day 3 of chondrogenic differentiation, which leads to an early use of these cells. Finally, this work allows us to (i) select the umbilical cords suitable for cellular and cartilage engineering, (ii) define the conditions mimicking in vitro an allogeneic situation, (iii) elucidate the immunomodulatory properties of WJ-MSC during Alg/HA biomaterials chondrogenic differentiation, including allogeneic situations
2

Mécanismes d'action de la thérapie cellulaire par cellules souches mésenchymateuses après infarctus cérébral chez le rat. Développement d'un médicament de thérapie innovante

Moisan, Anaick 04 December 2012 (has links) (PDF)
L'accident vasculaire cérébral (AVC) représente la première cause de handicap acquis de l'adulte. A l'heure actuelle, moins de 10% des patients peuvent bénéficier de la thrombolyse, et aucun traitement, en dehors de la rééducation, ne permet de réduire efficacement le handicap. Il existe donc un réel besoin de disposer de nouvelles thérapeutiques permettant d'améliorer la récupération et pouvant être administrées dans un délai élargi par rapport à celui de la thrombolyse. Nos travaux expérimentaux chez le rat, associant imagerie IRM de la microvascularisation, analyse de l'expression des gènes de l'angiogenèse et étude comportementale, ont permis de définir une phase de transition (J3-J7) suivie d'une phase subaigüe (J7-J25) post-AVC. Ces deux phases sont apparues comme des fenêtres thérapeutiques potentielles pour l'administration de traitement pro-angiogéniques. Depuis près de 20 ans, de nombreuses équipes se sont tournées vers la thérapie cellulaire, notamment par cellules souches/stromales mésenchymateuses humaines (CSMh), comme thérapie réparatrice dans les AVC avec un triplement du nombre d'essais cliniques au cours des 10 dernières années. Cependant, les données de la littérature ne permettent pas de bien comprendre le mécanisme d'action des CSMh, particulièrement après une administration à la phase subaigüe. Nos travaux ont permis de progresser dans la compréhension de l'effet microvasculaire des CSMh, administrées dans les conditions d'un essai clinique de phase II qui se déroule actuellement à Grenoble (ISIS : Intravenous Stem Cells After Ischemic Stroke). Nous avons montré que la récupération sensori-motrice et cognitive post-ischémique observée après administration intraveineuse de CSMh était liée à une augmentation de l'angiogenèse. Les facteurs angiogéniques Ang2, Ang1, SDF-1 et TGFβ1, dont la sécrétion endogène est augmentée par les CSMh, semblent participer à une meilleure stabilisation vasculaire et pourrait expliquer l'effet bénéfique de ces cellules. Dans le cadre du développement des CSMh en tant que médicament de thérapie innovante, nous avons montré l'absence de potentiel tumorigène des CSMh par une étude toxicologique de tumorigénicité in vivo. Par analyse rétrospective des CSMh produites dans le cadre de l'essai clinique de phase II, nous avons montré la faisabilité de la production de CSMh conformes aux spécifications et en quantité suffisante par l'Unité de Thérapie Cellulaire. Par ailleurs, ces CSMh cultivées ex vivo peuvent présenter des anomalies caryotypiques erratiques, non clônales. Ces anomalies semblent être liées au maintien en culture, plus qu'au procédé lui-même. Une composante "donneur" semble également contribuer à l'apparition de ces anomalies.
3

Développement d'un médicament de thérapie innovante utilisant la fraction vasculaire stromale du tissu adipeux autologue dans la sclérodermie systémique : de la caractérisation biologique à l'identification de biomarqueurs potentiels d'efficacité / Development of an advanced therapy medicinal product using stromal vascular fraction of autologous adipose tissue in systemic scleroderma : from biological characterization to identification of potential biomarkers of efficacy

Magalon, Jérémy 02 February 2018 (has links)
L’objectif de ce travail est de caractériser les effets antifibrotiques et angiogéniques de la FVS et d’évaluer l’impact du contexte sclérodermique sur ces propriétés angiogéniques. D’autre part, d’identifier une stratégie de monitoring biologique de cette thérapie applicable au contexte sclérodermique.Le premier volet a été de déterminer si la FVS injectée localement peut limiter les processus de fibrose in vivo. L’injection de FVS réalisée précocement ou tardivement s'accompagne d'une réduction significative de la surface de fibrose au profit des surfaces musculaires dans un modèle porcin d’incontinence urinaire. Le deuxième volet a été de rechercher si le contexte autologue de la sclérodermie systémique affecte les propriétés angiogéniques de la FVS. Cette étude a montré une légère altération de la capacité angiogénique sur des tests de Matrigel Plug in vivo associé à une signature transcriptomique de la FVS de patients sclérodermiques. Le troisième volet a été d’identifier une stratégie de monitoring biologique utile pour évaluer objectivement l’impact de nouvelles thérapies sur la vasculopathie associée à la sclérodermie systémique. L’élévation des PECs et de la Fractalkine prédisent de manière indépendante le score de sévérité de la maladie et la gravité de la fibrose pulmonaire. Ce travail a ainsi permis de progresser dans le développement d’une thérapie cellulaire innovante pour limiter la vasculopathie ischemique et la fibrose à l’origine du handicap des mains chez les patients sclérodermique et de monitorer son efficacité dans le futur. / The aim of this work is to characterize the antifibrotic and angiogenic effects of FVS and to evaluate the impact of the scleroderma context on these angiogenic properties. On the other hand, to identify a strategy of biological monitoring of this therapy applicable to the sclerodermic context.The first step was to determine whether locally injected FVS can limit fibrosis in vivo. The injection of SVF performed early or late is accompanied by a significant reduction in the area of fibrosis in favor of muscle surfaces in a porcine model of urinary incontinence. The second component was to investigate whether the autologous context of systemic scleroderma affects the angiogenic properties of SVF. This study showed a slight alteration of angiogenic capacity on in vivo Matrigel Plug assays associated with a transcriptomic signature of SVF of scleroderma patients. The third component was to identify a biological monitoring strategy that could be used to objectively evaluate the impact of new therapies on vasculopathy associated with systemic sclerosis. The elevation of EPCs and Fractalkine independently predict the severity score of the disease and the severity of pulmonary fibrosis.This work has made it possible to progress in the development of an innovative cell therapy to limit the ischemic vasculopathy and the fibrosis causing hand handicap in scleroderma patients and to monitor its effectiveness in the future.
4

Mécanismes d'action de la thérapie cellulaire par cellules souches mésenchymateuses après infarctus cérébral chez le rat. Développement d'un médicament de thérapie innovante / Mechanisms of MSC as a cellular therapy in stroke - clinical of an advanced therapy medicinal product

Moisan, Anaïck 04 December 2012 (has links)
L'accident vasculaire cérébral (AVC) représente la première cause de handicap acquis de l'adulte. A l'heure actuelle, moins de 10% des patients peuvent bénéficier de la thrombolyse, et aucun traitement, en dehors de la rééducation, ne permet de réduire efficacement le handicap. Il existe donc un réel besoin de disposer de nouvelles thérapeutiques permettant d'améliorer la récupération et pouvant être administrées dans un délai élargi par rapport à celui de la thrombolyse. Nos travaux expérimentaux chez le rat, associant imagerie IRM de la microvascularisation, analyse de l'expression des gènes de l'angiogenèse et étude comportementale, ont permis de définir une phase de transition (J3-J7) suivie d'une phase subaigüe (J7-J25) post-AVC. Ces deux phases sont apparues comme des fenêtres thérapeutiques potentielles pour l'administration de traitement pro-angiogéniques. Depuis près de 20 ans, de nombreuses équipes se sont tournées vers la thérapie cellulaire, notamment par cellules souches/stromales mésenchymateuses humaines (CSMh), comme thérapie réparatrice dans les AVC avec un triplement du nombre d'essais cliniques au cours des 10 dernières années. Cependant, les données de la littérature ne permettent pas de bien comprendre le mécanisme d'action des CSMh, particulièrement après une administration à la phase subaigüe. Nos travaux ont permis de progresser dans la compréhension de l'effet microvasculaire des CSMh, administrées dans les conditions d'un essai clinique de phase II qui se déroule actuellement à Grenoble (ISIS : Intravenous Stem Cells After Ischemic Stroke). Nous avons montré que la récupération sensori-motrice et cognitive post-ischémique observée après administration intraveineuse de CSMh était liée à une augmentation de l'angiogenèse. Les facteurs angiogéniques Ang2, Ang1, SDF-1 et TGFβ1, dont la sécrétion endogène est augmentée par les CSMh, semblent participer à une meilleure stabilisation vasculaire et pourrait expliquer l'effet bénéfique de ces cellules. Dans le cadre du développement des CSMh en tant que médicament de thérapie innovante, nous avons montré l'absence de potentiel tumorigène des CSMh par une étude toxicologique de tumorigénicité in vivo. Par analyse rétrospective des CSMh produites dans le cadre de l'essai clinique de phase II, nous avons montré la faisabilité de la production de CSMh conformes aux spécifications et en quantité suffisante par l'Unité de Thérapie Cellulaire. Par ailleurs, ces CSMh cultivées ex vivo peuvent présenter des anomalies caryotypiques erratiques, non clônales. Ces anomalies semblent être liées au maintien en culture, plus qu'au procédé lui-même. Une composante "donneur" semble également contribuer à l'apparition de ces anomalies. / Stroke is the leading cause of disability in adult. Less than 10% of patients can be treated with thrombolysis. Except rehabilitation, no effective treatment exists to improve functional recovery after the acute phase. Therefore, there is a wide need to develop an effective therapy applicable after several days or weeks following stroke. Using a multiparametric approach (microvascular MRI, analysis of angiogenic genes expression and behavioral study) in rat ischemic stroke model, we defined a transition stage (D3-D7) followed by a subacute phase (D7-D25) during post-stroke remodeling. These two phases represent an interesting target time-window for administration of pro-angiogenic therapies. Since 20 years, cell therapy, notably by human mesenchymal stem/stromal cells (hMSC), emerged as a “regenerative treatment” with threefold increase in clinical trial during the last 10 years. However, still limited data are available regarding the mechanisms by which hMSC benefit, especially at the subacute phase. We progressed in understanding the microvascular plasticity that occurs after an intravenous injection of hMSC in a rat model of transient focal cerebral ischemia. Our preclinical studies were carried out simultaneously with a phase II clinical trial that currently goes on in Grenoble (ISIS: Intravenous Stem Cells After Ischemic Stroke). We reported a sustained functional and cognitive long-term benefit of hMSC IV injected at the subacute stage correlated to an increase of angiogenesis. Ang2, Ang1, SDF-1 and TGFβ1, whose endogenous level tends to be overexpressed by hMSC, would enhance stabilization and survival of newborn vessels, accounting for benefit of these cells. As part of the hMSC development as an advanced therapy medicinal product, we realized an in vivo tumorigenicity assay and showed the absence of tumor development after hMSC injection. We also retrospectively analyzed hMSC produced for the phase II clinical trial. We confirmed the feasibility to produce hMSC, conformed to specifications and in adequate quantity, in the Cell Therapy Unit. In addition, we showed that ex vivo expanded hMSC can present, non clonal, erratic chromosomal abnormalities. Such chromosomal abnormalities appeared to be more related to the maintenance in culture than to the manufacturing process. A “donor” component may also contribute to emergence of such abnormalities.
5

Optimisation de dispositifs médicaux thérapeutiques implantables pour l'ingénierie tissulaire osseuse et cartilagineuse / Implantable therapeutic medical device optimisation for bone and cartilage tissue engineering

Wagner, Quentin 15 December 2017 (has links)
Notre équipe a optimisé la formulation de dispositifs médicaux implantables pour l’ingénierie tissulaire osseuse et cartilagineuse. A ces fins, nous nous sommes basés sur des implants nanostructurés d’origine naturelle ou synthétique conçus au sein du laboratoire par la méthode d’électrospinning, pour imiter la matrice extracellulaire du compartiment osseux, et un hydrogel composé d’alginate et d’acide hyaluronique imitant la composition du compartiment cartilagineux. Dans une première partie de mon travail, pour la régénération osseuse, nous avons optimisé la formulation d’un implant nanostructuré à base de chitosane pour une accélération de cette régénération. Ceci a été possible en rendant actif ce dispositif médical implantable par incorporation de nanoparticules de silice, conférant à la construction nanocomposite des propriétés mécaniques accrues, et une excellente biocompatibilité avec le tissu hôte. Une autre étude pour la même visée a permis d’élaborer une nouvelle stratégie d’ensemencement de dispositif implantable synthétique et nanostructuré par des microtissus cellulaires, remplaçant un ensemencement de cellules isolées et permettant des performances de minéralisation accrues à l’intérieur de l’implant. Dans un deuxième temps, pour la régénération de l’unité ostéoarticulaire, nous avons proposé deux implants bi-compartimentés et hybrides comportant des microtissus de cellules souches mésenchymateuses. Ces implants sont composés d’un hydrogel contenant les cellules souches permettant la régénération du cartilage, et d’une membrane collagénique naturelle (Bio-Gide®) ou synthétique (membrane de polycaprolactone), dotée de nanoréservoirs (technologie brevetée par le laboratoire) de facteur de croissance ostéogénique (BMP-7) pour une régénération du socle osseux (os sous-chondral) de l’unité os-cartilage. La troisième partie de mon travail a concerné la vascularisation des implants osseux et particulièrement l’accélération du recrutement vasculaire. Dans ce cadre plus vasculaire, nous avons proposé une stratégie qui vise à doter un implant synthétique nanostructuré de facteur de croissance angiogénique (VEGF), puis à lui appliquer un ensemencement séquentiel de cellules mésenchymateuses adultes « ostéoblastes humains» et de cellules endothéliales humaines (HUVECs). Cette stratégie a permis un recrutement et une hiérarchisation accrue des cellules endothéliales dans l’implant. En conclusion, l’optimisation des implants développés au laboratoire permettra sans nul doute de proposer dans un futur proche de nouveaux dispositifs médicaux implantables (DMI) thérapeutique combinés de type DMI-MTI (Médicaments de Thérapie Innovante) pour l’ingénierie tissulaire osseuse et cartilagineuse en particulier en médecine régénérative ostéo-articulaire. / Our team optimized the formulation of implantable medical devices for bone and cartilage tissue engineering. To that end, we based our work on nanostructured implants, either natural or synthetic, made in the laboratory by electrospinning process, to mimic bone extracellular matrix, and hydrogel of alginate/hyaluronic acid to mimic cartilage extracellular matrix. First, concerning bone regeneration, we optimized the formulation of a nanostructured scaffold composed of natural chitosan to enhance bone regeneration. This was made possible by doping this implantable medical device with silica nanoparticles, offering this nanocomposite better mechanical properties, and excellent biocompatibility with host tissue. Another study with the same aim allowed elaborating a new cell seeding strategy, to seed these implantable medical devices with cell microtissues instead of single cells, offering higher mineralisation efficiencies within the implant. Consequently, for the regeneration of the osteochondral unit, we proposed two compartmented and hybrid implants comprising mesenchymal stem cells microtissues. Those implants are made of a hydrogel containing the stem cells, allowing the regeneration of cartilage, and a membrane, either natural (collagenic Bio-Gide®) or synthetic (electrospun polycaprolactone) equipped with nanoreservoirs (technology patented by the laboratory) of osteogenic growth factor (BMP-7) for the regeneration of osseous stand (the subchondral bone) of the bone-cartilage unit. Finally, to study the improvement in vascular recruitment, we proposed a new strategy combining the modification of an implantable device with angiogenic growth factor (VEGF), prior to its sequential seeding with mesenchymal cells “human osteoblasts” and human endothelial cells (HUVECs). This strategy allowed higher recruitment and structuration of endothelial cells within the implant. To conclude, the implant optimisation strategies developed in the laboratory will certainly allow proposing in the near future new combined Advanced Therapy Medicinal Products (ATMPs) and Implantable Medical Device for bone and cartilage regeneration, in particular in the field of osteoarticular regenerative nanomedicine.

Page generated in 0.0884 seconds