• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 123
  • 42
  • 41
  • 30
  • 24
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • Tagged with
  • 631
  • 67
  • 56
  • 52
  • 50
  • 43
  • 36
  • 32
  • 32
  • 32
  • 31
  • 31
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Polyphenols, ascorbate and antioxidant capacity of the Kei-apple (Dovyalis caffra) / Tersia de Beer

De Beer, Tersia January 2006 (has links)
There is a close relationship between the susceptibility to disease and nutritional state, in the sense that an adequate diet enhances resistance to disease. There is an increasing interest in this beneficial relationship among scientists, food manufacturers and consumers. The trend is moving towards functional foods and their specific health benefits. The results of numerous epidemiological studies and recent clinical trials provide consistent evidence that diets rich in fruits and vegetables can reduce the risk of chronic diseases. These protective effects are mediated through multiple groups of beneficial nutrients contained in the fruits and vegetables, one of these being polyphenol antioxidants. The intake of the polyphenols plays an important role in the reduction and prevention of coronary heart disease (CHD), cardiovascular disease and cancer, as a consequence of their associated antioxidant properties. Fruits contain an array of polyphenols with antioxidant capacity. Polyphenols may be classified in two broad groups namely: flavonoids and non-flavonoids. Flavonoid subgroups in fruits are further grouped as catechins, anthocyanins, procyanidins and flavonol among others. Phenolic acids occur as hydroxylated derivatives of benzoic acid and cinnarnic acid, and are classified as non-flavonoids. Polyphenols have redox properties allowing them to act as reducing agents, hydrogen donators and singlet oxygen quenchers, and thus contribute to the antioxidant capacity of fruits and vegetables. Because of the numerous beneficial effects attributed to these antioxidants, there is renewed interest in finding vegetal species with high phenolic content and relevant biological activities. In view of the importance of these substances towards health and food chemistry, this study will focus on the polyphenol and Vitamin C characterisation and quantification of an indigenous South African fruit, the Kei-apple (Dovyalis cafra), thought to have antioxidant properties. Due to the fact that polyphenol content influences the colour, taste and possible health benefits of the fruit / processed food product, this study will supply valuable information to industry in choosing the best fruit processing methods to attain the desired end product. The exploitation of indigenous South African fruits (Marula and Kei-apple) is receiving increasing prominence, not only due to their health benefits, but also the opportunities these present to rural based economics. Furthermore, this research will serve as a platform for further research on the Kei-apple and other indigenous South African fruits with possible health benefits. Aims: The overall aim of this study is the quantification and characterisation of various nutritionally important antioxidants (polyphenols and ascorbate) in the Kei-apple fruit in its entirety, as well as in its individual fruit components (peel, flesh and seeds). In addition, the total antioxidant capacity of the entire fruit and the various fruit components will be determined in the unfractionated and fractionated fruit extracts. Gas chromatography coupled mass spectrometry (GC-MS) characterisation of the individual polyphenol components will also be analyzed in order to speculate on possible specific health benefits which the Kei-apple may possess. Methods: The study was designed to ensure that a representative fruit sample was collected. Approximately 100 kg Kei-apples were picked in the month of November 2004 from the Bloemhof area in South Africa. A sample of 50 fruits was rinsed and separated into the various components (peel, flesh and seeds). An additional 50 fruits were randomly selected, cleaned and used in their entirety for data representative of the entire fruit. The sample extracts were prepared, after being grounded and lyophilized, by a method described by Eihkonen et al. (1999) using 70% aqueous acetone. The C18-fractionation on the fruit and separated fruit components resulted in four fractions containing (1) phenolic acids; (2) procyanidins, catechins and anthocyanin monomers; (3) flavonols and (4) anthocyanin polymers. The total polyphenol content of the fruit and fruit components as well as the above mentioned C18-fractions were determined by Folin-Ciocalteu's method (Singleton & Rossi, 1965). Both free and total ascorbate concentrations in these samples were determined as described by Beutler (1984), in addition to total sugar content of these via standard methods. Apart from their nutritional interest, both these measurements are necessary for the correction of the total polyphenol concentrations. The total antioxidant capacity of the entire fruit and various fruit components was determined by measuring the oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of the unfractionated and fractionated extracts. Using GC-MS analysis, the various individual polyhenol compounds contributing to the total polyphenol content of the Kei-apple was separated, identified and quantified. This quantitative data was captured and statistically analysed. The analysis of variation was performed using the Tukey Honest Significant Difference test for post-hoc comparison. ORAC, FRAP and polyphenol Pearson correlation analyses were performed using Statistics (Statsoft Inc., Tulsa, Oklahoma, USA) with significance set at P ≤ 0.05. Results and discussion: This study determined the presence of various nutritionally important antioxidants (polyphenols and ascorbate), the total antioxidant capacity in the entire fruit as well as in the individual fruit components (peel, flesh and seeds) and their polyphenol sub group fractions. Total phenol content: The Kei-apple, in its entirety, has a polyphenol concentration of 943 ± 20.3 mg GAE/100g dry weight. Comparison of the individual fruit components showed the seeds to have the highest total polyphenol concentration with 1990 ± 31.3 mg GAE/100g dry weight, followed by that of the peel, 1126 ± 45.8 mg GAE/100g dry weight and then that of the flesh, 521 ± 1.01 mg GAE/100g dry weight. Total, L-ascorbic (ASC) and L-dehydroascobic (DHA) concentration: The total ascorbate of Kei-apple fruit is 517 ± 0.92 mg/100g dry weight. In contrast to the polyphenol content, the flesh of the Kei-apple had significantly the highest concentration of total ascorbate 778 ± 1.20 mg/100g dry weight, Gascorbic 241 ± 21.0 mg/100g dry weight, as well as Gdehydroascobic 537 ± 22.2 mg/100g dry weight. The ratio of Lascorbic acidltotal ascorbate for the flesh, entire fruit, peel and seed is 0.31,0.43,0.49,0.95, respectively, indicating the seeds are the most stable source of biologically active Vitamin C, with 95% of the total ascorbate occurring as G ascorbate. This is also in line with the total polyphenol content of these components, confirming a polyphenol sparing effect on ascorbate. C18-fractionation extracts: Solid phase (C18) fractionation of the Kei-apple fruit and fruit components showed that the fruit, peels and seeds consist predominantly of phenolic acids, followed by procyanidin, catechin and anthocyanin monomers and thereafter varying amounts of anthocyanin polymers and flavonols. Antioxidant capacity: The antioxidant capacity of the entire fruit and individual fruit components as determined by ORAC, (r=0.76) and FRAP, (r=0.95) significantly correlated with the total polyphenol content, as well as to each other (r=0.88), indicating both to be good predictors of antioxidant capacity. GC-MS polyphenol characterisation of the Kei-apple: Caffeic acid and hydro-p-coumaric acid were seen to be the phenolic acids occurring in the highest concentrations in the Kei-apple fruit. The majority of these are concentrated in the flesh and in the case of caffeic acid, also in the peel. The order of predominance of other major non-flavonoid components in the whole fruit analysis are m-hydroxybenzoic acid > p-hydroxyphenyl acetic acid > 3-methoxy-4- hydroxyphenylpropionic acid > p-coumaric acid. The peel of the Kei-apple, apart from caffeic acid, has exceptionally high concentrations of ferulic acid and also serves as a source of protocatechuic acid. Syringic acid was most prominent in the seeds. Although the total flavonoid concentration in the Kei-apple was low, taxifolin and catechin were identified and the seeds almost entirely accounting for these. Conclusion: From this study it was concluded the Kei-apple is a rich source of antioxidant compounds (polyphenols and ascorbate), with a strong antioxidant capacity, and hence may be associated with health promotion properties, particularly in the prevention of cancer, cardiovascular disease, and neurodegeneration. Additionally, due to the increased scientific and commercial interest in this fruit, it is essential to take into consideration the various factors (agronomic, genomic, pre- and post harvest condition and processing) and tissues. This might affect the chemical composition of the final marketed product, which may play a significant role in determining the polyphenol and ascorbate composition and bioactivity of these compounds during food processing procedures. Hence, the polyphenol composition of the various fruit components should be taken into consideration when selecting a method of fruit processing into the desired end product. / Thesis (M.Sc. (Nutrition))--North-West University, Potchefstroom Campus, 2007.
142

Polyphenols, ascorbate and antioxidant capacity of the Kei-apple (Dovyalis caffra) / Tersia de Beer

De Beer, Tersia January 2006 (has links)
There is a close relationship between the susceptibility to disease and nutritional state, in the sense that an adequate diet enhances resistance to disease. There is an increasing interest in this beneficial relationship among scientists, food manufacturers and consumers. The trend is moving towards functional foods and their specific health benefits. The results of numerous epidemiological studies and recent clinical trials provide consistent evidence that diets rich in fruits and vegetables can reduce the risk of chronic diseases. These protective effects are mediated through multiple groups of beneficial nutrients contained in the fruits and vegetables, one of these being polyphenol antioxidants. The intake of the polyphenols plays an important role in the reduction and prevention of coronary heart disease (CHD), cardiovascular disease and cancer, as a consequence of their associated antioxidant properties. Fruits contain an array of polyphenols with antioxidant capacity. Polyphenols may be classified in two broad groups namely: flavonoids and non-flavonoids. Flavonoid subgroups in fruits are further grouped as catechins, anthocyanins, procyanidins and flavonol among others. Phenolic acids occur as hydroxylated derivatives of benzoic acid and cinnarnic acid, and are classified as non-flavonoids. Polyphenols have redox properties allowing them to act as reducing agents, hydrogen donators and singlet oxygen quenchers, and thus contribute to the antioxidant capacity of fruits and vegetables. Because of the numerous beneficial effects attributed to these antioxidants, there is renewed interest in finding vegetal species with high phenolic content and relevant biological activities. In view of the importance of these substances towards health and food chemistry, this study will focus on the polyphenol and Vitamin C characterisation and quantification of an indigenous South African fruit, the Kei-apple (Dovyalis cafra), thought to have antioxidant properties. Due to the fact that polyphenol content influences the colour, taste and possible health benefits of the fruit / processed food product, this study will supply valuable information to industry in choosing the best fruit processing methods to attain the desired end product. The exploitation of indigenous South African fruits (Marula and Kei-apple) is receiving increasing prominence, not only due to their health benefits, but also the opportunities these present to rural based economics. Furthermore, this research will serve as a platform for further research on the Kei-apple and other indigenous South African fruits with possible health benefits. Aims: The overall aim of this study is the quantification and characterisation of various nutritionally important antioxidants (polyphenols and ascorbate) in the Kei-apple fruit in its entirety, as well as in its individual fruit components (peel, flesh and seeds). In addition, the total antioxidant capacity of the entire fruit and the various fruit components will be determined in the unfractionated and fractionated fruit extracts. Gas chromatography coupled mass spectrometry (GC-MS) characterisation of the individual polyphenol components will also be analyzed in order to speculate on possible specific health benefits which the Kei-apple may possess. Methods: The study was designed to ensure that a representative fruit sample was collected. Approximately 100 kg Kei-apples were picked in the month of November 2004 from the Bloemhof area in South Africa. A sample of 50 fruits was rinsed and separated into the various components (peel, flesh and seeds). An additional 50 fruits were randomly selected, cleaned and used in their entirety for data representative of the entire fruit. The sample extracts were prepared, after being grounded and lyophilized, by a method described by Eihkonen et al. (1999) using 70% aqueous acetone. The C18-fractionation on the fruit and separated fruit components resulted in four fractions containing (1) phenolic acids; (2) procyanidins, catechins and anthocyanin monomers; (3) flavonols and (4) anthocyanin polymers. The total polyphenol content of the fruit and fruit components as well as the above mentioned C18-fractions were determined by Folin-Ciocalteu's method (Singleton & Rossi, 1965). Both free and total ascorbate concentrations in these samples were determined as described by Beutler (1984), in addition to total sugar content of these via standard methods. Apart from their nutritional interest, both these measurements are necessary for the correction of the total polyphenol concentrations. The total antioxidant capacity of the entire fruit and various fruit components was determined by measuring the oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of the unfractionated and fractionated extracts. Using GC-MS analysis, the various individual polyhenol compounds contributing to the total polyphenol content of the Kei-apple was separated, identified and quantified. This quantitative data was captured and statistically analysed. The analysis of variation was performed using the Tukey Honest Significant Difference test for post-hoc comparison. ORAC, FRAP and polyphenol Pearson correlation analyses were performed using Statistics (Statsoft Inc., Tulsa, Oklahoma, USA) with significance set at P ≤ 0.05. Results and discussion: This study determined the presence of various nutritionally important antioxidants (polyphenols and ascorbate), the total antioxidant capacity in the entire fruit as well as in the individual fruit components (peel, flesh and seeds) and their polyphenol sub group fractions. Total phenol content: The Kei-apple, in its entirety, has a polyphenol concentration of 943 ± 20.3 mg GAE/100g dry weight. Comparison of the individual fruit components showed the seeds to have the highest total polyphenol concentration with 1990 ± 31.3 mg GAE/100g dry weight, followed by that of the peel, 1126 ± 45.8 mg GAE/100g dry weight and then that of the flesh, 521 ± 1.01 mg GAE/100g dry weight. Total, L-ascorbic (ASC) and L-dehydroascobic (DHA) concentration: The total ascorbate of Kei-apple fruit is 517 ± 0.92 mg/100g dry weight. In contrast to the polyphenol content, the flesh of the Kei-apple had significantly the highest concentration of total ascorbate 778 ± 1.20 mg/100g dry weight, Gascorbic 241 ± 21.0 mg/100g dry weight, as well as Gdehydroascobic 537 ± 22.2 mg/100g dry weight. The ratio of Lascorbic acidltotal ascorbate for the flesh, entire fruit, peel and seed is 0.31,0.43,0.49,0.95, respectively, indicating the seeds are the most stable source of biologically active Vitamin C, with 95% of the total ascorbate occurring as G ascorbate. This is also in line with the total polyphenol content of these components, confirming a polyphenol sparing effect on ascorbate. C18-fractionation extracts: Solid phase (C18) fractionation of the Kei-apple fruit and fruit components showed that the fruit, peels and seeds consist predominantly of phenolic acids, followed by procyanidin, catechin and anthocyanin monomers and thereafter varying amounts of anthocyanin polymers and flavonols. Antioxidant capacity: The antioxidant capacity of the entire fruit and individual fruit components as determined by ORAC, (r=0.76) and FRAP, (r=0.95) significantly correlated with the total polyphenol content, as well as to each other (r=0.88), indicating both to be good predictors of antioxidant capacity. GC-MS polyphenol characterisation of the Kei-apple: Caffeic acid and hydro-p-coumaric acid were seen to be the phenolic acids occurring in the highest concentrations in the Kei-apple fruit. The majority of these are concentrated in the flesh and in the case of caffeic acid, also in the peel. The order of predominance of other major non-flavonoid components in the whole fruit analysis are m-hydroxybenzoic acid > p-hydroxyphenyl acetic acid > 3-methoxy-4- hydroxyphenylpropionic acid > p-coumaric acid. The peel of the Kei-apple, apart from caffeic acid, has exceptionally high concentrations of ferulic acid and also serves as a source of protocatechuic acid. Syringic acid was most prominent in the seeds. Although the total flavonoid concentration in the Kei-apple was low, taxifolin and catechin were identified and the seeds almost entirely accounting for these. Conclusion: From this study it was concluded the Kei-apple is a rich source of antioxidant compounds (polyphenols and ascorbate), with a strong antioxidant capacity, and hence may be associated with health promotion properties, particularly in the prevention of cancer, cardiovascular disease, and neurodegeneration. Additionally, due to the increased scientific and commercial interest in this fruit, it is essential to take into consideration the various factors (agronomic, genomic, pre- and post harvest condition and processing) and tissues. This might affect the chemical composition of the final marketed product, which may play a significant role in determining the polyphenol and ascorbate composition and bioactivity of these compounds during food processing procedures. Hence, the polyphenol composition of the various fruit components should be taken into consideration when selecting a method of fruit processing into the desired end product. / Thesis (M.Sc. (Nutrition))--North-West University, Potchefstroom Campus, 2007.
143

Pflanzenstärkungsmittel im ökologischen Apfelanbau

Rank, Harald 27 September 2011 (has links) (PDF)
In einer ökologisch bewirtschafteten Apfelanlage in Dresden-Pillnitz wurde die Wirkung von insgesamt 12 Pflanzenstärkungsmitteln auf die Baum- und Ertragsentwicklung, die Fruchtqualität und den Schaderregerbefall untersucht. Der dreijährige Versuch mit der Sorte »Gala« zeigt nur bei den Pflanzenstärkungsmitteln Fruogard und Vitisan wirksame positive Effekte. Sie sind hauptsächlich auf den signifikant geringeren Schorfbefall zurückzuführen. Der Einsatz von Pflanzenstärkungsmitteln ist mit zusätzlichen Kosten verbunden. Je nach Anwendungshintergrund liegen sie zwischen 64 und 880 Euro/Hektar.
144

Understanding the Flesh Browning Disorder of Cripps Pink Apples

James, Hannah Jill January 2007 (has links)
Doctor of Philosophy (PhD) / The Flesh Browning (FB) disorder of ‘Cripps Pink’ apples presents a significant threat to the established market identity of the ‘Cripps Pink’ apple in Australian and export markets. Climatic conditions during fruit growth and development predispose ‘Cripps Pink’ apples to developing the FB disorder during storage. The FB disorder can be classified into two distinct disorders based on their physiological and structural differences and by seasonal climatic conditions. The diffuse type of FB (DFB) is a chilling injury, occurring in districts or seasons accumulating less than 1100 growing degree days (GDD) above 10oC between full bloom and harvest. In these climatic conditions, ‘Cripps Pink’ apples have delayed postharvest ethylene production. Diffuse FB effects fruit cortex tissue and is characterised as cellular collapse. Storing fruit at 3oC can reduce the incidence of DFB. The radial type of FB (RFB) is primarily a senescent disorder, occurring in districts or seasons accumulating greater than 1400 GDD above 10oC between full bloom and harvest. In these climatic conditions, postharvest ethylene production is not delayed. Radial FB affects the cells adjacent to the vascular tissue of the fruit and is characterised by damaged cell walls. Storing fruit at 1oC can reduce the incidence of RFB. Harvest maturity and the level of CO2 in the storage atmosphere are additive influences on the development of RFB. Seasons or districts accumulating more than 1700 GDD have a very low risk for developing RFB. Seasonal climatic conditions can provide a guide for predicting the risk of developing RFB and DFB during storage.
145

The pest status and management of woolly aphid in an Australian apple orchard IPM program /

Nicholas, Adrian Harry. January 2000 (has links)
Thesis (Ph. D.) -- University of Western Sydney, Hawkesbury, 2000. / Includes bibliographical references (leaves 160-187).
146

Regulating trade with a systems approach the case of Chinese fresh apples /

Gao, Lili. January 2008 (has links)
Thesis (M.S.)--Michigan State University. Dept. of Agricultural, Food, and Resource Economics, 2008. / Title from PDF t.p. (viewed on July 24, 2009) Includes bibliographical references (p. 184-193). Also issued in print.
147

The role of insecticides in the soils of Wisconsin orchards

Stelzer, Lorin Roy, January 1957 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1957. / Typescript. Abstracted in Dissertation abstracts, v. 17 (1957) no. 11, p. 2359-2360. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 71-72).
148

Vliv nálady na sociální síti Twitter na kurz akciových titulů

Fiala, Vojtěch January 2015 (has links)
This diploma thesis deals with a question of identification of causality between sentiment on social network Twitter and a price of specific, publicly traded stocks on New York Stock Exchange (NYSE). By a multi criteria analysis were chosen stocks of Microsoft Corporation and Apple Inc. There is constructed a model, which identifies authors messages on Twitter -- tweets and sentiment which they carry in relation to companies. Success of this model is examined by both qualitative and quantitative analysis. The thesis is trying to provide a solution to current and potential investors and management of the companies in order to take better decisions in allocating funds and managing the companies.
149

VadÄrVar : -en organisationsapp

Lövheim, Jona January 2018 (has links)
Arbetet utforskar möjligheten att skapa en iOS-applikation och undersöker Apples programmeringsspråk Swift. Appen syftar till att ge föräldrar en möjlighet att organisera undanlagda barnkläder och skor genom att lägga in dem i ett register. Slutprodukten är en app där användaren lägger in föremål som definieras av fem kategorier. Appen sorterar föremålen och presenterar en trädvy som visar de gemensamma kategorierna.Data i appen sparas permanent som JSON-filer.
150

Conservação frigorificada da maçã ‘eva’ orgânica com aplicação de cloreto de cálcio

Soares, Lais Peixoto da Rocha [UNESP] 29 August 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:42Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-08-29Bitstream added on 2014-06-13T20:34:29Z : No. of bitstreams: 1 000752746.pdf: 1665294 bytes, checksum: 02689ed9cd6ab9f00c427b2ef796a067 (MD5) / O objetivo desse trabalho foi avaliar as modificações na qualidade de maçãs cv. Eva orgânica submetida ao tratamento pós-colheita com cloreto de cálcio. O experimento dói conduzido com maçãs produzidas no município de Botucatu –SP. O delineamento experimental foi inteiramente casualizados, em esquema fatorial 5x5 com 3 repetições por dia de análise. Os frutos foram imersos por 15 minutos em CaCl2, constituindo assim os tratamentos: Controle (imersão em água); CaCl2 à 1%; CaCl2 à 1,5%; CaCl2 à 2%; CaCl2 à 2,5%. Posteriormente, os frutos foram acondicionados em bandejas e armazenados em BOD. O delineamento experimental foi inteiramente casualizados, em esquema fatorial 5x5 com 3 repetições por dia de análise e comparados pelo teste de Tukey a 5%. Os frutos foram analisados no dia zero e a cada cinco dias até o 20° dia de armazenamento. Foram analisados quanto a perda de massa e a taxa de respiração, Coloração da casca e da polpa, pH, Acidez tiutlável (AT), sólidos solúveis, índice de maturação, atividade antioxidante pelo método DPPH, compostos fenólicos totais e vida de prateleira. Os tratamentos com cloreto de cálcio não influenciaram nos teores de sólidos solúveis, pH ,acidez total titulável, no índice de maturação, cloração da casca e da polpa, compostos fenólicos. Os frutos imersos em cloreto de cálcio apresentaram uma menor perda de massa e taxa respiratória que o tratamento controle. A imersão dos frutos em cloreto de cálcio aumentou o período de conservação / The aim of this study was to evaluate the effect of calcium chloride (CaCl2) applied in the apple cv. Eva on postharvest .The experiment was conducted with apples, produced in the city of Botucatu – SP- Brazil. The experiment consisted of the immersion of the fruits in different concentrations of CaCl2 (1,0%, 1,5%, 2,0%) for 15 minutes and one control (dipping in water). Whole fruits after the treatments were placed in polystyrene trays, stored in B.O.D. for 20 days. The experimental design was completely randomized factorial. In Experiment, we used 5 x 5 (treatments x days of storage), by comparing the means with Tukey test in a ratio of 5% probability. Analyses were performed with an interval of 5 days on the following parameters: color, regarding fresh mass loss, soluble solids, total titratable acidity, pH, respiratory activity, ‘Ratio’, antioxidant activity (DPPH) and phenolic compounds. The immersion in calcium chloride of apple fruit obtained a least loss of fresh and provided better preservation of apple fruits without interfering in the quality characteristics

Page generated in 0.0504 seconds