• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 29
  • 22
  • 14
  • 13
  • 12
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeting Cancer Metabolism with Ketosis and Hyperbaric Oxygen

Poff, Angela M. 10 June 2014 (has links)
Cancer cells exhibit an abnormal metabolic phenotype characterized by glycolysis and lactate fermentation in the presence of oxygen, a phenomenon known as the Warburg effect. This dysregulated metabolism plays an important role in every aspect of cancer progression, from tumorigenesis to invasion and metastasis. The Warburg effect is a common phenotype shared by most, if not all, cancer types. It is especially prominent in metastatic tumors, which are notoriously resistant to treatment and responsible for the majority of cancer-related deaths. Thus, metabolic therapies which target the Warburg effect could offer novel therapeutic options for most cancer patients, including those with aggressive or late-stage cancers. The ketogenic diet is a high fat, low carbohydrate diet that induces a physiological state of nutritional ketosis - decreased blood glucose and elevated blood ketones. It has been investigated as a cancer therapy for its potential to exploit the Warburg effect by restricting glucose availability to glycolysis-dependent tumors, and has been reported to slow cancer progression in some animal models as well as in anecdotal reports and small clinical studies in humans. Interestingly, there is some evidence that the elevation in blood ketones induced by the ketogenic diet contributes to its anti-cancer effects, suggesting that ketone supplementation could possibly inhibit cancer progression on its own. Rapid growth outstrips a tumor's ability to adequately perfuse its tissue, creating regions of tumor hypoxia which exacerbate the Warburg effect and promote a malignant phenotype. Hyperbaric oxygen therapy is the administration of 100% oxygen at elevated barometric pressure. It supersaturates the blood with oxygen, increasing its diffusion distance into the tissues, and can therefore be used to increase intratumoral pO2 and reverse tumor hypoxia. Here we present evidence that the ketogenic diet, ketone supplementation, and hyperbaric oxygen therapy work individually and in combination to slow progression and extend survival in the VM-M3 model of metastatic cancer. This study strongly suggests that these cost effective, non-toxic metabolic therapies should be further evaluated in animal and human studies to determine their potential clinical use.
2

Funktionelle Untersuchung zur Duplikation des SLC2A3-Gens in Patienten mit Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung / Functional investigation of the duplication of the SLC2A3 gene in patients with attention-deficit/hyperactivity disorder

Keleş, Can-Florian January 2022 (has links) (PDF)
Zusammenfassung 1) Fragestellung und zentrale Untersuchung Unter der Hypothese, dass die Transportrate des Glukosetransporters Typ 3 (GLUT3) abhängig von der Kopienanzahl (CNV) des für ihn kodierenden Gens SLC2A3 ist, wurden Zelllinien mit drei Kopien (Duplikation) mit Kontroll-Zelllinien mit nur zwei Kopien bezüglich ihrer Glukoseaufnahme miteinander verglichen (n=2; N=9). Hierzu wurde die zelluläre Glukoseaufnahme mittels radioaktiv markierter 2-Desoxyglukose in via Eppstein-Barr-Virus immortalisierten lymphoblastoiden Zelllinien (EBV-LCLs) gemessen. In den initialen Untersuchungen zeigt sich, dass das Protokoll an manchen Stellen zu viel Spielraum lässt. Die Methode wird daraufhin standardisiert und bezüglich einiger Parameter angepasst: g-Zentrifugeneinstellung, Mischen/Aliquotieren, Zellanzahl, Replikatanzahl, Inkubationszeit/-intervalle und Durchführungsdauer. 2) Wichtigste Ergebnisse Die funktionelle Untersuchung zur Duplikation des SLC2A3-Gens in Patienten mit Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) zeigt schließlich im dynamischen Aushungerungsversuch der EBV-LCLs über vier Tage (Vergleich t2 zu t1) statistisch für die Gruppen eine deutliche Differenz mit mittlerer Effektstärke (Lineares Gemischtes Modell; p = 0,06; Cohens d = 0,37). Zum zweiten Messzeitpunkt (t2) zeigt sich statistisch zwischen den Gruppen eine sehr signifikante Differenz mit hoher Effektstärke (Lineares Gemischtes Modell; p < 0,006; Cohens d = 0,55). Damit konnte in dieser Arbeit nachgewiesen werden, dass die SLC2A3-Duplikation neben dem Gendosiseffekt auf mRNA-Ebene auch hypermorph funktionelle Veränderungen auf zellulärer Ebene nach sich zieht. Nachfolgende Untersuchungen sollten vor diesem Hintergrund mögliche Kofaktoren investigieren und auf Alterationen in nachgeschalteten Signalwegen abzielen. / 5.1 Research question and central investigation Under the hypothesis that the transport rate of the glucose transporter type 3 (GLUT3) is dependent on the copy number (CNV) of the gene encoding it, SLC2A3, cell lines with three copies (duplication) were compared with control cell lines with only two copies with respect to their glucose uptake (n=2; N=9). For this purpose, cellular glucose uptake was measured using radiolabeled 2-deoxyglucose in lymphoblastoid cell lines (EBV-LCLs) immortalized via Eppstein-Barr virus. The initial studies show that the protocol leaves too much leeway at some maneuvers. The method is then standardized and adapted with regard to the following parameters: g-centrifuge setting, mixing/aliquoting, cell number, replicate number, incubation time/intervals and execution time. 5.2 Main results The functional investigation for the duplication of the SLC2A3 gene in patients with attention-deficit/hyperactivity disorder (ADHD) finally shows in the dynamic starvation test of EBV-LCLs over four days (comparison t2 to t1) statistically for the groups a significant difference with a mean effect size (Linear Mixed model; p = 0.06; Cohen's d = 0.37). At the second measurement time point (t2), there is statistically a very significant difference with a high effect size (Linear Mixed Model; p < 0.006; Cohen's d = 0.55). Thus, this work demonstrated that the SLC2A3 duplication in addition to the gene dosage effect at the mRNA level, also induces hypermorphic functional changes at the cellular level. Subsequent studies should investigate possible cofactors and target alterations in downstream signaling pathways.
3

Regulation of Mammary cell Differentiation and Metabolism by Singleminded-2s

Scribner, Kelly C 16 December 2013 (has links)
Ductal carcinoma in situ (DCIS) has been shown to be a precursor to invasive ductal cancer (IDC). Though the progression of DCIS to IDC is believed to be an important aspect of tumor aggressiveness, prognosis and molecular markers that predict progression are poorly understood. Therefore, determining the mechanisms by which some DCIS progress is critical for future breast cancer diagnostics and treatment. Singleminded-2s (SIM2s) is a member of the bHLH/PAS family of transcription factors and a key regulator of differentiation. SIM2s is highly expressed in mammary epithelial cells and lost in breast cancer. Loss of Sim2s causes aberrant mouse mammary development with features suggestive of malignant transformation, whereas over-expression of Sim2s promotes precocious alveolar differentiation, suggesting that Sim2s is required for establishing and enhancing mammary gland differentiation. We hypothesize that SIM2s expression must be lost in premalignant lesions for breast cancer to develop. We first analyzed Sim2s in the involuting mammary gland, which is a highly tumorpromoting environment. Sim2s is down-regulated during involution, and forced expression delays involution. We then analyzed SIM2s expression in human breast cancer samples and found that SIM2s is lost with progression from DCIS to IDC, and this loss correlates with metastasis. SIM2s expression in DCIS promoted a differentiated phenotype and suppressed genes associated with de-differentiation. Furthermore, loss of SIM2s expression in DCIS xenografts increased metastasis likely due to an increase in hedgehog signaling and matrix metalloproteinase expression. Interestingly, we found metabolic shifts with gain and loss of SIM2s in not only DCIS cells, but also MCF7 and SUM159 cells. SIM2s expression decreased aerobic glycolysis and promoted oxidative phosphorylation through direct upregulation of CDKN1a and senescence. Loss of SIM2s, conversely, promotes mitochondrial dysfunction and induction of the Warburg effect. This is the first time CDKN1a and cellular senescence have been indicated as causative to metabolic shifts within cancer cells. These studies show a new role for SIM2s in metabolic homeostasis, and this regulation is lost during tumorigenesis. These data indicate SIM2s is at the apex where aging, metabolism, and disease meet – regulating the delicate relationship between the three.
4

Regulation of cellular metabolism by the Notch receptor signalling pathway

SLANINOVÁ, Věra January 2012 (has links)
Seven genes involved in metabolism were tested as direct targets of the Notch signalling pathway. For each gene the occupancy of its enhancers by Su(H), its transcriptional response to Notch pathway and its biological functionality was verified in vitro and in vivo.
5

Glucose Metabolism in Cancer-Associated Fibroblasts

Vo, Annie Phuong 24 June 2016 (has links)
Under normal conditions, non-transformed cells rely on glycolysis followed by oxidative phosphorylation to generate ATPs. When oxygen is scarce or when cells are actively proliferating, cellular ATPs come mainly from glycolysis. Pyruvate is converted into lactate to allow glycolysis to continue. Interestingly, cancer cells have adapted to favor lactate production even at normal oxygen tensions, exhibiting a metabolic shift known as the Warburg effect. However, the metabolic state of other cellular constituents within the tumor remains mostly unknown. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells. They aid tumor growth and metastasis by providing growth factors, cytokine, ECM remodeling proteins and interacting with other tumor stromal cells. Here I show that the Warburg effect also operates in stromal fibroblasts of the tumor microenvironment. Using mass spectrometry, genetic mouse models, gene expression and methylation studies, I demonstrate that CAFs from human and mouse mammary tumors exhibit hyperactive glycolysis and a metabolic shift towards lactate production. Furthermore, this phenotype may be sustained through epigenetic modifications of endogenous hypoxia-inducible factor 1α, key regulatory enzymes fructose-bisphosphatase 1 and pyruvate kinase M2. Depletion of stromal fibroblasts or suppression of lactate production specifically in these cells alters the metabolic profile of not only the tumors but also the cancer cells and results in impeded tumor growth. These results collectively suggest that tumor growth is dependent on metabolic state and metabolic support of stromal fibroblasts, highlighting these cells as attractive therapeutic targets in controlling cancer progression.
6

Characterization of Metabolic Differences in Benign, Slow Developing and Tumor Initiating Ovarian Cancers

Anderson, Angela S. 14 May 2013 (has links)
Ovarian cancer is known as the "silent killer," due to its late diagnosis and frequent recurrence after initial treatment.  Finding a new way to diagnose and treat ovarian cancer in conjunction with current therapies is paramount.  By capitalizing on metabolic changes that occur during cancer progression, interventions can be developed.  The Nobel laureate Otto Warburg is credited with discovering an altered metabolic state within cancer cells known as the Warburg effect.  In the Warburg effect, cancer cells participate in an increased rate of aerobic glycolysis with an excess secretion of lactate, allowing for carbon flux into biosynthetic pathways.  Exactly which metabolic pathways are altered in ovarian cancer and at which stage in the progression of ovarian cancer they are occurring was unknown.  Therefore using the recently established mouse ovarian surface epithelial (MOSE) progression model, we were able to measure metabolic changes in varying states of disease and levels of aggressiveness.  As cells progressed from a benign early stage (MOSE-E), through a transitional intermediate stage (MOSE-I), to an aggressive late stage (MOSE-L), the MOSE cells became more glycolytic and lipogenic, establishing the MOSE model as a valuable model for studying ovarian cancer metabolism.  Treating the MOSE cells with the naturally occurring chemotherapeutic agent sphingosine decreased p-AKT  protein levels in the cell, decreased the glycolytic rate and decreased de novo cholesterol synthesis.  Cancer stem cells are known to be resistant to chemotherapy treatments and targeting their metabolism may be promising for combinatorial treatments.  Therefore, the metabolism of highly aggressive tumor-initiating cells (TIC), harvested from ascites of C57Bl/6 mice injected with MOSE-L cells were characterized.  Although the basal metabolism of the TICs was similar to the MOSE-L cells, TICs were more resistant to cell death as a consequence of external stresses and substrate depletion.  The TICs could also up-regulate oxygen consumption rate (OCR) when uncoupled and increase glycolysis when ATP Synthase was inhibited, highlighting their resiliency.  Taken together, we have identified targets for treatment strategies that could suppress the growth of primary tumors and may be effective against TICs, thereby suppressing tumor recurrence and possibly prolonging the life of women with ovarian cancer. / Ph. D.
7

Development of models and methods to assess the efficacy of anti-cancer drugs targeted to the mitochondria

Potter, Michelle January 2014 (has links)
<strong>Background:</strong> Malignant transformation of cells is typically characterised by aerobic glycolysis, resulting in supressed mitochondrial function, a state that helps resistance to apoptosis. This characteristic has been widely accepted as a hallmark of cancer and has been shown to be of critical importance in tumour development. The bioenergetic differences between normal and malignant cells are being exploited to identify potential cancer specific therapeutics. Improved in-vitro models are required to aid the identification and assessment of candidate drugs. In this project, we investigated the bioenergetic phenotypes of a panel of adult and paediatric cancer cell lines and evaluated the potential of 3D models as a platform for testing drugs that target cancer metabolism. We also investigated a novel method to assess mitochondrial function that enables the quantification of the level of oxygenation within the cell. <strong>Results:</strong> The results presented in this thesis show that not all cancers display this aerobic glycolytic phenotype. We found that while some cell lines displayed the Warburg phenotype others displayed high levels of oxidative metabolism. These bioenergetic profiles need to be considered when deciding which anti-cancer drugs to use in a chemotherapeutic regime. If a bioenergetic pattern can be identified it may one day form the basis of a screening strategy for tumours. Dichloroacetate (DCA) is a small molecule PDK inhibitor that was investigated in this study. It was found to be relatively non-toxic to cells cultured in 2D but had improved toxicity when the cells were cultured in a 3D environment. Lastly, we evaluated a new oxygen sensing nanoprobe, Mito-Xpress Intra, and the results demonstrate its potential as a non-invasive means of measuring oxygen concentrations within the cell in real time as well as highlighting some striking differences between applied ambient and measured intracellular oxygen concentrations. <strong>Conclusion:</strong> The findings suggest that not all cancers display the characteristic glycolytic phenotype. They also highlight the importance of controlling oxygen and glucose levels when evaluating metabolism and when drug testing.
8

Preclinical evaluation of pharmacological strategies designed to enhance the activity of established and novel anti-cancer drugs : synopsis - evaluation of pharmacological strategies designed to modulate the Warburg effect, enhance the activity of tyrosine kinase inhibitors and novel analogues of Temozolomide

Saleem, Mohammed Umer January 2014 (has links)
Whilst progress has been made in reducing mortality in some cancers, mortality rates remain high in many cancers and there is a need to develop novel therapeutic strategies. In this thesis, various pharmacological strategies designed to enhance the activity of existing therapeutic drugs were evaluated. Cancer cells are dependent upon aerobic glycolysis (the Warburg effect) and glutamine uptake. Using clinically approved tyrosine kinase inhibitors and Bortezomib, significant enhancement of chemosensitivity was observed when used in combination with inhibitors of lactate dehydrogenase (Gossypol) and pyruvate kinase dehydrogenase (Dichloroacetate). In contrast, depletion of glutamine from media had to be extensive in order to induce cell death and cell death only occurred after prolonged exposure to glutamine-deprived conditions. This suggests that glutamine depletion strategies alone are unlikely to be successful but may be useful in combination with other agents targeting glutamine addiction in cancer cells. Finally, Temozolomide (TMZ) is an important drug in the treatment of glioblastomas but its activity is reduced by resistance mechanisms including O6 methyl guanine methyltransferase (MGMT) and mismatch repair (MMR). This thesis has identified analogues of TMZ (EA02-45, EA02-59, EA02-64 and EA02-65) that are MGMT and MMR independent in terms of inducing cell kill in vitro. These compounds are promising leads for future development. In conclusion, this thesis has demonstrated that interfering with the metabolic phenotype of cancer can enhance the activity of existing drugs and identified novel analogues of TMZ that circumvent drug resistance mechanisms that hamper the efficacy of TMZ.
9

Cellular Metabolism Regulates Anti-Oxidant Response Through ERK5-MEF2 Pathway / Rôle de la voie ERK5-MEF2 dans la régulation de la réponse anti-oxydante par le métabolisme cellulaire

Khan, Abrar Ul Haq 27 June 2017 (has links)
Le métabolisme cellulaire est la source principale d’énergie et les cellules cancéreuses ont un métabolisme différent des cellules non transformées. La cellule tumorale a tendance à éviter l’activité mitochondriale et ainsi la phosphorylation oxydative, pour lui préférer la voie de la glycolyse pour la production d’énergie (Effet Warburg). Cette altération du métabolisme est si bénéfique pour les cellules en croissance que cela favorise la croissance tumorale et supprime la réponse immunitaire anticancéreuse. La spécificité de ce métabolisme en fait une cible intéressante pour le développement de thérapies anticancéreuses. Mon travail de thèse comporte deux parties. La première partie décrit que lorsque les cellules cancéreuses sont forcées à utiliser la voie mitochondriale comme source d’énergie à travers l’oxydation phosphorylative, elles initient un mécanisme antioxydant pour tolérer les effets délétères des espèces oxygénées réactives (EOR ou ROS pour reactive oxygene species) produites au cours de l’activité mitochondriale. La stimulation mitochondriale entraîne l’activation de la voie de signalisation ERK5-MEF2, et cette dernière engendre un mécanisme antioxydant de deux façons.Initialement, nous avons observé que MEF2 régule positivement l’expression de miR23a, et ce dernier inhibe l’expression de KEAP1. Cette protéine est responsable de la dégradation ubiquitine dépendante de NRF2, un régulateur clé de la réponse antioxydante cellulaire. L’inhibition de KEAP1 empêche la dégradation cytoplasmique de NRF2. Consécutivement à cela la concentration cytoplasmique en NRF2 augmente ce qui engendre sa translocation dans le noyau où il se lie à une séquence élément de réponse antioxydant (ARE) dans la région promotrice de nombreux gènes antioxydants, initiant ainsi leur transcription. Plus tard nous avons observé que l’activation de la voie ERK5-MEF2 induisait directement la synthèse de novo de NRF2, induisant sa translocation nucléaire et un mécanisme antioxydant. L’inhibition de la voie ERK5-MEF2 altère la réponse antioxydante, sensibilisant ainsi les cellules au stress oxydant.La seconde partie de mon travail a exploré les mécanismes à l’origine des effets hypolipémiants du dichloroacétate (DCA). Le DCA est une petite molécule qui inhibe la PDK1 et permet au pyruvate d’entrer dans la mitochondrie. Il a été utilisé en clinique dans le passé pour baisser les taux plasmatiques de cholestérol mais le mécanisme n’était pas clair et nous l’avons décris. Le DCA force les cellules à entrer en oxydation phosphorylative ce qui active la voie ERK5-MEF2. Cette voie augmente directement l’expression du LDLR (Low Density Lipoprotein Receptor ; récepteur aux lipoprotéines de basse densité) qui permet l’endocytose des LDL riches en cholestérol qui sont responsables de la plupart des maladies cardiovasculaires. L’inhibition de cette voie supprime l’afflux de lipides et par conséquent serait une cible intéressante pour de futures recherches puisque de hauts taux de cholestérols sont directement corrélés avec une augmentation du risque d’athérosclérose et de toutes les complications mortelles qu’il entraine.Notre prochain objectif est d’explorer les autres mécanismes cellulaires régulés par la voie ERK5-MEF2. Sur la base de nos résultats préliminaires, nous proposons que cette voie non seulement régule l’expression du LDLR mais aussi celle de nombreux autres gènes qui sont impliqués directement ou indirectement dans le métabolisme des lipides. / Cellular metabolism is the main source of energy and cancer cells has different metabolism than non-transformed cells. Tumor cell tends to avoid mitochondrial activity and oxidative phosphorylation (OXPHOS) and prefer glycolysis for energy production (Warburg effect). This alteration in metabolism is beneficial for growing cells in many ways that promote tumor growth and suppress the anti-cancer immune response. This specific metabolism is an auspicious target for the better development of cancers chemotherapies.My thesis work comprises two parts. The first portion describes that when cancer cells are forced to utilize their mitochondria in order to obtain the energy from OXPHOS they initiate an antioxidant mechanism to cope with the deleterious effects of reactive oxygen species (ROS) produced during mitochondrial activity. Mitochondrial stimulation leads to activation of ERK5-MEF2 signaling pathway, which triggers the antioxidant mechanism by at least two ways.Initially we observed that MEF2 up regulates the expression of miR23a, which inhibits KEAP1 expression. This protein is responsible for ubiquitinational degradation of NRF2, a master regulator of the antioxidant response in cells. The inhibition of KEAP1 prevents the NRF2 cytoplasmic degradation. This results in high built up of NRF2 in cytoplasm that translocates to nucleus where it binds to ARE (antioxidant response element) in the upstream promoter region of many antioxidant genes hence initiates their transcription. Latter we observed that activation of ERK5-MEF2 pathway directly results in de novo synthesis of NRF2, resulting in nuclear translocation and triggering of the antioxidative mechanism. Inhibition of ERK5-MEF2 pathway impairs the cellular antioxidant response, thus sensitizing cells towards oxidative stress.The second part of my work explored the mechanism behind the lipid lowering effects of dichloroacetate (DCA). DCA is a small molecule, which inhibits the PDK1 and enables pyruvate to enter the mitochondria. It was used clinically in past to lower the plasma cholesterol level but the underlying mechanism was not clear and we describe it here. DCA forces cells to perform OXPHOS, which activate the ERK5-MEF2 pathway. This pathway directly up-regulates the expression of Low Density Lipoprotein Receptors (LDLR) that are mainly involved in the endocytosis of cholesterol-rich low density lipoproteins, which are responsible for the majority of cardiovascular diseases. Inhibition of this pathway suppresses lipid influx and hence, it would be an interesting target of future investigation since high cholesterol level is the main cause of various life threatening diseases and the development of atherosclerosis.Our next goal is to exploit other possible cellular mechanism regulated by ERK5-MEF2 pathway. Based on our preliminary data, we propose that this pathway not only regulate the LDLR expression but many other genes, which are directly or indirectly involved in lipid metabolism.
10

Diffuse Large B-Cell Lymphoma: A Metabolic Disorder?

Tanios, Georges, Aranguren, Ines M., Goldstein, Jack S., Patel, Chirag B. 02 December 2013 (has links)
Objective: Challenging differential diagnosis Background: B cell lymphoma constitutes 80-85% of cases of Non Hodgkin's lymphoma in the Untied States. Metabolic complications may arise from the disease itself or through its end organ involvement. Case Report: We describe a case of a diffuse large B cell lymphoma diagnosed by abdominal computed tomography after it initially presented as hypoglycemia not correctable by dextrose infusion that instead resulted in increased anion gap metabolic acidosis with elevated lactate levels. Conclusions: The case illustrates how lymphomas can present unusually with hypoglycemia and lactic acidosis, the latter being an ominous sign that can occur without liver involvement. In this regard, the case demonstrates the metabolic sequelae of lymphoma that should raise suspicion for an underlying process. This has implications for diagnosis, treatment, and patient survival. Attention should be paid especially in the primary care setting in order to minimize delays in diagnosis.

Page generated in 0.0755 seconds