• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 29
  • 22
  • 14
  • 13
  • 12
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

La métalloprotéase matricielle-11 facilite la progression des tumeurs de la glande mammaire murine / Matrix metalloproteinase-11 promotes mouse mammary gland tumor progression

Tan, Bing 13 September 2018 (has links)
Dans la plupart des pays industrialisés, le cancer du sein est la principale cause de décès chez les femmes. Le microenvironnement tumoral (TME) joue un rôle important dans la progression du cancer du sein. Le TME est un tissu complexe composé d’une matrice extracellulaire remaniée, de fibroblastes, de cellules inflammatoires et endothéliales. Récemment un nouveau composant cellulaire du TMA a été identifié. Il est formé par des adipocytes modifiés situés en regard de cellules cancéreuses appelées "adipocytes associés au cancer" (CAA). Ces constituants ajoutent à la complexité du TME. La protéase matricielle Matrix Metalloproteinase-11 (MMP-11) est une protéine du TME, elle est sécrétée par les «fibroblastes associés au cancer» (CAF) au centre de la tumeur et par les CAA à la périphérie de la tumeur (le front d’invasion). Soutenant l'idée que la MMP11 contribue à la progression tumorale, des études antérieures ont montré qu’une expression élevée était associée à une survie sans récidive plus courte des patientes atteintes d'un cancer du sein. Cependant, le mécanisme d'action spécifique de cette protéase est resté mal compris. Des études plus récentes ont montré que la MMP-11 est un régulateur négatif du développement du tissu adipeux et qu’elle module le métabolisme énergétique. Ces observations suggéraient que l'expression de MMP-11 dans le TME pourrait participer directement à la progression de la tumeur en modulant le métabolisme du tissu adipeux au profit des cellules cancéreuses. Cependant, la façon dont la MMP-11 agit, notamment à l'interface entre les cellules cancéreuses du sein et les CAAs, reste largement inconnue. Pour l’étudier, nous avons développé des modèles précliniques de cancer de la glande mammaire chez la souris par génie génétique. Tout d'abord, des souris déficientes (perte de fonction-LOF) ou surexprimant MMP-11 (Gain de Fonction-GOF) ont été croisées avec un modèle génétique de tumeurs mammaires (MMTV-PyMT). Des résultats cohérents ont été obtenus en utilisant les deux modèles. La MMP11 favorise la progression tumorale précoce, en augmentant la prolifération et en réduisant l'apoptose des cellules cancéreuses. De plus, l’expression de la MMP-11 a été associée à un changement métabolique dans la tumeur et à une altération significative de l’Unfolded Protein Response mitochondriale (UPRmt) et à une activation du stress du réticulum endoplasmique (UPRER). Ces données confortent l'idée selon laquelle la MMP-11 contribue à une réponse métabolique adaptative favorisant la croissance du cancer. Deuxièmement, pour aborder directement la fonction de la MMP-11 produite par le tissu adipeux sur la progression du cancer, nous avons généré une lignée de souris transgénique (appelée aP2-MMP11-IRES-GFP) dans laquelle l'expression de MMP-11 est contrôlée par un promoteur spécifique du tissu adipeux. L’implantation directe de cellules cancéreuses syngéniques dans le coussinet mammaire de ces souris a montré que l'expression de la MMP11 favorisait la croissance tumorale. Finalement, nos données soutiennent le concept selon lequel l'expression de MMP-11 par les adipocytes associés au cancer (CAA) contribuerait à une réponse métabolique adaptative favorisant la croissance du cancer. Ils renforcent aussi l’intérêt que représente la MMP-11 comme cible pour le traitement du cancer. / Breast cancer is the most common leading cause of death in women. The tumor microenvironment (TME) plays an important role in breast cancer progression. The TME is a complex tissue composed of extracellular matrix proteins, fibroblasts, inflammatory and endothelial cells. Recently modified adipocytes called “Cancer-Associated Adipocytes” (CAAs) were identified as emerging components of the TME adding into the complexity of this tumor component. Matrix Metalloproteinase-11 (MMP-11) is a protein from the TME, it is secreted by "Cancer-Associated Fibroblasts" (CAFs) in the center of the tumor and by CAAs in the tumor periphery also qualified as the “invasive front”. Previous studies showed that elevated MMP11 expression is associated with a poorer outcome in breast cancer patients supporting the idea that MMP11 contributes to tumor progression but the mechanism of action remained unclear. Recent studies showed that MMP-11 is a negative regulator of adipose tissue development and controls energy metabolism. These observations suggested that MMP-11 expression in the TME may directly participate in breast tumor progression by modulating the adipose tissue metabolism at the benefit of cancer cells. However, how MMP-11 acts in the TME notably at the interface of breast cancer cells and CAAs remains largely unknown. To study the role of MMP-11 on breast cancer progression, we developed a series of preclinical mouse mammary gland tumour models by genetic engineering. First, mice either deficient- (Loss of Function-LOF) or overexpressing- MMP-11 were crossed with a genetic model of spontaneous mammary tumors (MMTV-PyMT). Consistent results were obtained using GOF and LOF, showing that MMP11 favored early tumor progression, by increasing proliferation and reducing apoptosis of cancer cells. Of interest, MMP-11 was associated with a metabolic switch in the tumor and the activation of the mitochondrial unfolded protein response (UPRmt) and endoplasmic reticulum stress (UPRER). These data support the idea that MMP-11 contributes to an adaptive metabolic response favoring cancer growth. Second, to directly address the function of MMP-11 produced by the adipose tissue on cancer progression, we generated a transgenic mouse line (named aP2-MMP11-IRES-GFP) in which MMP-11 expression is controlled by an adipose tissue-specific promoter. Direct grafting of syngeneic cancer cells in the mammary fad-pad of these mice showed that MMP11 expression favored tumor growth. Altogether our data support the idea that MMP-11 expression by cancer associated adipocytes contributes to an adaptive metabolic response, named metabolic flexibility, favoring cancer growth. They further substantiate the potential of MMP-11 as a target for cancer therapy.
22

METABOLISM REPROGRAMMING IN HEXAVALENT CHROMIUM-INDUCED HUMAN LUNG CARCINOGENESIS

Wise, James Tate Fortin 01 January 2019 (has links)
Hexavalent chromium, Cr(VI), is an established human carcinogen that is a worldwide environmental health concern. It is well understood that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to Cr(VI)-induced carcinogenesis. After decades of research some cancer hallmarks remain understudied for the mechanism of Cr(VI) carcinogenesis. Dysregulated cellular energetics have been established as a hallmark of cancer. Energy pathways that become dysregulated in cancer include mitochondrial respiration, lipogenesis, pentose phosphate pathway, one carbon metabolism, and increased anaerobic glycolysis in the presence of oxygen or ‘Warburg effect’. To investigate metabolism changes in Cr(VI) carcinogenesis, we exposed human lung epithelial cells (BEAS-2B cells) to Cr(VI) for six months and isolated a colony from soft agar. To confirm the results in the BEAS-2B cells, we used two other sets of Cr(VI)-transformed cells, human lung epithelial cells (BEP2D cells) and human lung fibroblasts (WTHBF-6 cells). We found increased lipogenesis related protein expressions including: ATP citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) in Cr(VI)-transformed cells as compared to passage-matched control cells. We also observed increased palmitic acid levels, confirming that Cr(VI)-transformed cells were making more lipids. Cr(VI)-transformed BEAS-2B cells had decreased colony formation in soft agar and decreased cell growth when treated with a FASN inhibitor (C75). ACLY, ACC1, and FASN protein expressions were also increased in chromate-induced lung tumors in human tissue samples. We also observed that Cr(VI)-transformed human lung cells (BEAS-2B, BEP2D, and WTHBF-6 cells) had no major changes in their mitochondrial respiration as measured by the Seahorse Analyzer when compared to their passage-matched control cells. Conversely, xenograft tumor-derived cells had mitochondrial respiratory dysfunction. Interestingly, we also found that Cr(VI)-transformed human lung cells (BEAS-2B, BEP2D, and WTHBF-6 cells) had no major changes in their glycolytic function as measured by the Seahorse Analyzer when compared to their passage-matched control cells. Similarly, these cells did not have changes in glycolytic enzymes or extracellular L-lactate levels. Moreover, xenograft tumor-derived cells showed no changes in glycolytic endpoints or L-lactate levels. This indicates these cells did not undergo the ‘Warburg effect’. These data demonstrate that increased lipogenesis is important to Cr(VI)-induced lung carcinogenesis and are consistent with the cancer literature which reports that increased lipogenesis proteins occur during carcinogenesis. Additionally, our results indicate mitochondrial respiratory dysfunction is likely a result of the tumor microenvironment and a later step during Cr(VI) carcinogenesis. Lastly, we observed the ‘Warburg effect’ is not required for Cr(VI)-induced carcinogenesis in vitro. However, it remains to be shown if the ‘Warburg effect’ is still a consequence or contributing factor for tumorigenesis. Future studies are needed to investigate other metabolic pathways in Cr(VI)-induced carcinogenesis. In conclusion, some metabolism pathways are important to Cr(VI)-induced carcinogenesis, while others appear not to be.
23

Hypoxie et métabolisme tumoral : analyse génétique et fonctionnelle des symporteurs H+/lactate et de leur chaperone, BASIGINE / Hypoxia and cancer metabolism : genetic and functional analysis of H+/lactate symporters and their chaperone, BASIGIN

Marchiq, Ibtissam 30 September 2015 (has links)
Le catabolisme exacerbé du glucose et de la glutamine est actuellement reconnu comme une caractéristique des cellules cancéreuses, qui leur procure un avantage prolifératif via la production et l’accumulation de plusieurs métabolites au niveau du microenvironnement. Parmi ces métabolites, l’acide lactique représente une molécule de signalisation clé, favorisant la migration et les métastases. Mon projet de thèse s’inscrit dans le contexte d’une étude du métabolisme glycolytique associé aux cellules tumorales à division rapide. Durant ce projet, nous nous sommes intéressés à la caractérisation génétique et fonctionnelle des transporteurs MCT (MonoCarboxylate Transporters) 1 et 4, qui sont des symporteurs H+/lactate dont l’expression membranaire et la fonctionnalité requièrent la liaison avec une protéine chaperonne : CD147/BASIGINE (BSG). Afin de mieux explorer la physiologie des complexes MCT/BSG, et valider le ciblage de l’export d’acide lactique comme une nouvelle approche anti-cancer, nous avons développé une stratégie visant à invalider le gène BSG et/ou MCT4, en utilisant la technologie des Zinc Finger Nucleases (ZFN), dans des lignées cellulaires cancéreuses humaines de côlon, poumon et glioblastome. D’abord, nous avons démontré, que l’effet pro-tumoral majeur de BSG est lié à son action directe sur la stabilisation des MCTs au niveau des tumeurs glycolytiques et non pas à la production des metalloprotéases. Ensuite, nous avons démontré pour la première fois que l’inhibition concomitante de MCT1 et MCT4 est nécessaire pour induire une baisse significative de la tumorigénécité in vivo. / Enhanced glucose and glutamine catabolism has become a recognized feature of cancer cells, leading to accumulation of metabolites in the tumour microenvironment, which offers growth advantages to tumours. Among these metabolites is emerging as a key signalling molecule that plays a pivotal role in cancer cell migration and metastasis. In this thesis, we focused on the genetic and functional characterization of monocarboxylate transporters (MCT) 1 and 4, which are H+/lactate symporters that require an interaction with an ancillary protein, CD147/BASIGIN (BSG), for their plasma membrane expression and function. To further explore the physiology of MCT/BSG complexes and validate the blockade of lactic acid export as an anti-cancer strategy, we designed experiments using Zinc Finger Nuclease mediated BSG and/or MCT4 gene knockouts in human colon adenocarcinoma, lung carcinoma and glioblastoma cell lines. First of all, we demonstrated that the major protumoural action of BSG is to control the energetics of glycolytic tumours via MCT1/4 activity and not to produce matrix metalloproteases. Second, we showed for the first time that combined inhibition of both MCT1 and MCT4 transporters is required to achieve a significant reduction in the tumour growth in vivo. Moreover, our findings reported that disruption of the BSG gene dramatically reduced the plasma membrane expression and lactate transport activity of both MCT1 and MCT4, leading to increased accumulation of intracellular pools of lactic and pyruvic acids, decreased intracellular pH and reduced rate of glycolysis.
24

Mathematical approaches for the clinical translation of hyperpolarised 13C imaging in oncology

Daniels, Charlotte Jane January 2018 (has links)
Dissolution dynamic nuclear polarisation is an emerging clinical technique which enables the metabolism of hyperpolarised 13C-labelled molecules to be dynamically and non- invasively imaged in tissue. The first molecule to gain clinical approval is [1-13C]pyruvate, the conversion of which to [1-13C]lactate has been shown to detect early treatment re- sponse in cancers and correlate with tumour grade. As the technique has recently been translated into humans, accurate and reliable quantitative methods are required in order to detect, analyse and compare regions of altered metabolism in patients. Furthermore, there is a requirement to understand the biological processes which govern lactate pro- duction in tumours in order to draw reliable conclusions from this data. This work begins with a comprehensive analysis of the quantitative methods which have previously been applied to hyperpolarised 13C data and compares these to some novel approaches. The most appropriate kinetic model to apply to hyperpolarised data is determined and some simple, robust quantitative metrics are identified which are suitable for clinical use. A means of automatically segmenting 5D hyperpolarised imaging data using a fuzzy Markov random field approach is presented in order to reliably identify regions of abnormal metabolic activity. The utility of the algorithm is demonstrated on both in silico and animal data. To gain insight into the processes driving lactate metabolism, a mathematical model is developed which is capable of simulating tumour growth and treatment response under a range of metabolic and tissue conditions, focusing on the interaction between tumour and stroma. Finally, hyperpolarised 13C-pyruvate imaging data from the first human subjects to be imaged in Cambridge is analysed. The ability to detect and quantify lactate production in patients is demonstrated through application of the methods derived in earlier chapters. The mathematical approaches presented in this work have the potential to inform both the analysis and interpretation of clinical hyperpolarised 13C imaging data and to aid in the clinical translation of this technique.
25

Effets d’un mélange de polluants organiques persistants sur le métabolisme énergétique de cellules cancéreuses coliques humaines / Metabolic switch in energetic metabolism of colon cancer cells by environmental pollutants

Perrière, Clémentine 06 December 2013 (has links)
L’être humain est exposé quotidiennement et simultanément à des dizaines de polluants environnementaux, pourtant il n’existe encore que peu ou pas d’études sur les effets de ces mélanges. Des études épidémiologiques et transcriptomiques montrent que les polluants peuvent perturber le métabolisme glucidique et lipidique. Le lien entre métabolisme et cancer a été démontré depuis plusieurs décennies, en effet, une dérégulation du métabolisme oxydatif, appelée effet Warburg, et commune à presque toutes les cellules tumorales se caractérise par une déviation du métabolisme oxydatif mitochondrial vers une glycolyse anaérobie entrainant une augmentation de la production de lactate. Pour ce travail les effets d’un mélange de deux polluants organiques persistants ayant des voies de signalisation différentes sont étudiés. Le mélange associe la TCDD, une substance cancérigène, à un pesticide l’α-endosulfan, afin d’évaluer les effets combinés de ces deux polluants sur le métabolisme énergétique de cellules cancéreuses coliques humaines Caco2. Le traitement des cellules pendant 48 heures par la TCDD (25 nM) et l’α-endosulfan (10µM) conduit à une diminution de l’oxydation du glucose, corrélée à une augmentation de la production de lactate, alors que chaque polluant seul exerce un effet peu significatif. Le mélange diminue l’activité globale de la mitochondrie caractérisée par une diminution de la respiration cellulaire, et de la production d’ATP sans toutefois modifier l’intégrité mitochondriale. L’étude des mécanismes impliqués dans ces effets indique l’implication de l’AMPK et du complexe PDH, deux enzymes clés régulant de façon très importante la glycolyse cellulaire ; en effet l’inhibition de l’AMPK abolit les effets des polluants. Des modifications du calcium intracellulaire qui régule entre autre l’activité de ces deux enzymes sont observées et l’inhibition du calcium abolit également les effets des polluants. Ces travaux montrent que le mélange induit une aggravation de la dérégulation du phénotype métabolique des cellules Caco2 à l’état prolifératif. Cela pourrait signifier une synergie de l’activité de ces polluants qui pourrait accentuer ce phénotype dans un contexte tumorale via un mécanisme impliquant le calcium. / During tumorigenesis most of cancer cells exhibit an altered metabolism that is characterized by an elevated uptake of glucose and an increased glycolytic rate; this phenomenon is known as the Warburg effect. Compelling recent evidences suggest that alteration of cellular metabolism is critical during cancer development and constitutes a major feature of aggressive tumour. Considering the recent observations on the impact of persistent organic pollutants (POPs) on cell metabolism, we hypothesize that POPs could exert their carcinogenic effects by promoting metabolic alterations that could converge to a metabolic shift supporting a tumoral phenotype. Proliferating colon cancer cells (Caco2) were treated with TCDD (25 nM) or/and α-endosulfan (10 µM), two environmental pollutants mainly produced by human activities and designated by the International Agency for Research on Cancer as probably or well-established carcinogenic to humans. A significant decrease of glucose and glutamine oxidation (60%) was observed after a treatment for 48 hours with the two pollutants while each pollutant alone had no significant effect. These observations are correlated with an increased lactate production by two fold. These effects are maintained in the presence of antioxidative NAC (10 mM), suggesting that they are independent of the oxidative status of the cell. We also observed a decreased incorporation of glucose in total lipids (50%). The ATP production and the cell respiration level were significantly decreased by the mixture by about 50% and 80%, respectively. In the same conditions, the glycogen production and the NADPH/NADPH,H+ ratio were unchanged. Taken together, these results suggest that POPs could worsen the metabolic phenotype of cancer cells. The molecular mechanisms underlying the POPs-induced metabolic reprograming are under investigation and should provide a better understanding of the signalling pathways involved in POPs action on the regulation of the energetic metabolism balance and their consequence on cancer.
26

The transcriptional cofactor PCAF as mediator of the interplay between p53 and HIF-1 alpha and its role in the regulation of cellular energy metabolism

Rajendran, Ramkumar January 2011 (has links)
Energy production is a very important function for the cells to maintain homeostasis, survive and proliferate. Cellular energy can be produced either through oxidative phosphorylation (OXPHOS) in the presence of oxygen or glycolysis in its absence. Cancer cells, even in the presence of oxygen prefer to produce energy through glycolysis and this confers them a survival advantage. Energy metabolism has recently attracted the interest of several laboratories as targeting the pathways for energy production in cancer cells could be an efficient anticancer treatment. For that purpose the role of various transcription factors in determining the pathway of energy production has been investigated extensively and there is evidence to suggest that oncogenic transcription factors promote glycolysis whereas tumour suppressors demote it. In line with this notion, the master regulator of cellular response to hypoxia, the Hypoxia Inducible Factor 1 (HIF-1) has been shown to induce the expression of a variety of genes encoding enzymes involved in glucose metabolism as well as OXPHOS favouring energy production through glucose metabolism in hypoxic cells. The tumour suppressor p53 on the other hand inhibits glycolysis and stimulates OXPHOS. One of the pathways through which p53 exerts these effects, is by inducing the inhibitor of glycolysis TIGAR and the cytochrome c oxidase assembly factor SCO2 gene expression under DNA damage conditions. However, the regulation of the expression of these genes in hypoxic conditions has been only partially elucidated. We hypothesised that under hypoxic conditions, TIGAR and SCO2 gene expression might be differentially regulated in cells bearing mutated p53 and in these cells the involvement of HIF-1 could be crucial. Indeed under hypoxia mimicking conditions, the TIGAR and SCO2 protein and mRNA levels were found to be modulated differentially in p53 wild type and mutant cell lines. The bioinformatics analysis revealed the presence of hypoxia responsive elements (HREs) within the regulatory region of the promoters of TIGAR and SCO2 genes. Firefly reporter assays and chromatin immunoprecipitation (ChIP) assays have indicated that HIF-1 plays a crucial role in the regulation of TIGAR gene expression. The direct involvement of HIF-1 in the regulation of SCO2 gene expression requires further investigation. We and others have recently reported that PCAF is a common cofactor for p53 and HIF-1α, regulating the protein stability and transcription target selectivity of both transcription factors thereby orchestrating the balance between life and death in cancer cells. We hypothesised that PCAF plays a similar role in the regulation of cellular energy metabolism by differentially targeting HIF-1α and p53 to the promoter of TIGAR and SCO2 genes. In this study we present evidence to support the notion that PCAF plays an import role in the regulation of TIGAR and SCO2 gene expression under hypoxic mimicking conditions. This conclusion was supported by assessing the functional consequences of PCAFwt and PCAFΔHAT overexpression on the intracellular lactate production, cellular oxygen consumption, NAD+/NADH ratio and ROS generation in cells under hypoxia mimicking conditions.
27

Critical Investigation of the Usability of Hepatoma Cell Lines HepG2 and Huh7 as Models for the Metabolic Representation of Resectable Hepatocellular Carcinoma

Schicht, Gerda, Seidemann, Lena, Haensel, Rene, Seehofer, Daniel, Damm, Georg 05 December 2023 (has links)
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold standard. In this study, we characterized the metabolic profiles of primary human hepatoma cells (PHCs), HCLs and primary human hepatocytes (PHHs) to determine their differentiation states. PHCs and PHHs (HCC-PHHs) were isolated from surgical specimens of HCC patients and their energy metabolism was compared to PHHs from non-HCC patients and the HepG2 and Huh7 cells at different levels (transcript, protein, function). Our analyses showed successful isolation of PHCs with a purity of 50–73% (CK18+). The transcript data revealed that changes in mRNA expression levels had already occurred in HCC-PHHs. While many genes were overexpressed in PHCs and HCC-PHHs, the changes were mostly not translated to the protein level. Downregulated metabolic key players of PHCs revealed a correlation with malign transformation and were predominantly pronounced in multilocular HCC. Therefore, HCLs failed to reflect these expression patterns of PHCs at the transcript and protein levels. The metabolic characteristics of PHCs are closer to those of HCC-PHHs than to HCLs. This should be taken into account for future optimized tumor metabolism research.
28

Internalization of Extracellular ATP in Cancer Cells and Development of New Generations of Anticancer Glucose Transport Inhibitors

Qian, Yanrong January 2014 (has links)
No description available.
29

Avaliação do efeito do inibidor de histona deacetilase Panobinostat (LBH589) no metabolismo energético de células derivadas de câncer de pulmão / Evaluation of effects of histone deacetylase inhibitor Panobinostat (LBH589) on the energy metabolism of lung cancer cell lines

Renan Amphilophio Fernandes 09 July 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Os mecanismos de ação citotóxica do inibidor de histona deacetilase LBH589 foram investigados em associação com o quimioterápico cisplatina (CDDP) em duas linhagens derivadas de câncer de pulmão de não pequenas células (CPNPC). Os resultados foram analisados em relação ao tipo de morte celular associada às alterações em enzimas relacionadas ao metabolismo energético e a via glicolítica. Para realização do trabalho, foram utilizadas as linhagens tumorais A549 (selvagem para o gene de p53) e Calu-1 (nulo para o gene de p53) tratadas com LBH589 em combinação ou não com CDDP. Foram realizadas curvas de tempo e dose-resposta com as drogas isoladamente pelo ensaio de viabilidade celular (MTT) nas duas linhagens para a escolha das melhores condições para o nosso estudo. As condições dos tratamentos isolados com redução da viabilida celular menores que o IC50 de cada fármaco foram selecionados para realização dos tratamentos combinados. As avaliações de apoptose foram realizadas por citometria de fluxo pelo ensaio de Anexina V/PI, e com a marcação de proteínas por Western Blotting. As proteínas relacionadas a via glicolítica foram avaliadas por Western Blotting e a expressão de RNAm por qPCR. Os resultados demonstraram que o LBH589 combinado a CDDP foi capaz de induzir apoptose em 70% das células (Calu-1) e 54,9% (A549) no tempo de 24 horas, e 90% (calu-1) e 62,1% (A549) em 48 horas, independendo, portanto, do status da p53. Os níveis de expressão de enzimas relacionadas com o metabolismos energético também sofreram alterações nos tratamentos estudados. O LBH589 induziu aumento de cerca de 4x dos níveis de RNAm de HK isoformas I e II em ambas as linhagens. Houve também um aumento na expressão proteica das isoformas de HK I e II. Outras enzimas relacionadas a via glicolítica como PFKP, PKM2 e LDHA foram analisadas e apresentaram redução da expressão proteica, principalmente na presença do LBH589. A combinação da CDDP com LBH589 parece ser promissora para o tratamento de CPNPC induzindo apoptose através de alterações no metabolismo energético tumoral. / The cytotoxic mechanisms of action of the histone deacetylase inhibitor LBH589 was investigated in association with cisplatin in two cell lines derived from non-small lung cancer (NSCLC). The results were analyzed based on the type of the cell death associated with alterations in enzymes related to energy metabolism and glycolytic pathway. To perform the study, we used two non-small lung tumor cell lines, A549 (wild type for the p53 gene) and Calu-1 (null for p53 gene) treated with LBH589 in combination with cisplatin or not. Assays for time and dose responses were performed through the cell viability analysis (MTT) for each drug separately in both cell lines to choose the best conditions for our study. The conditions of isolated treatments with reduced viability lower than the IC50 of each drug were selected for carrying out the combined treatments. Assays for apoptosis detection by flow cytometry were performed by Annexin V / PI, the expression of proteins related to apoptosis by Western Blotting. The expression of glycolytic related proteins were performed by Western blotting and their mRNA expressions by qPCR. The results demonstrated that the combined LBH589 plus CDDP was able to induce apoptosis in 70% of cells -Calu-1- and 54.9% -A549- in 24 hours, and 90% (Calu-1) and 62.1 % (A549) in 48 hours regardless of the p53 status. The expression levels of enzymes related to energy metabolism also presented changes in the studied treatments. The LBH589 increase of about 4x the HK isoforms I and II mRNA levels in both cell lines. There was also an increase in the expression isoforms I and II of HK protein. Other enzymes related to the glycolytic pathway as PFKP, PKM2 and LDHA were analyzed and we observed reduced protein expression, especially in the presence of LBH589. The combination of CDDP with LBH589 appears promising for the treatment of NSCLC inducing apoptosis via alterations in energy metabolism tumor.
30

Warburg or reverse Warburg effect: Tumor microenvironment reprograms breast cancer metabolism to upregulate cell proliferation

Wang, Elaine 01 January 2018 (has links)
Cancer cells are most clearly characterized by their abnormal and uncontrolled cell growth. One of the most notable theories that explains the vast proliferative capacity of tumorigenic cells is the Warburg effect, a significant shift in metabolism wherein cancer cells preferentially fuel cell division using aerobic glycolysis instead of aerobic respiration. This upregulation of glycolytic fermentation in aerobic environments is highly unusual - glycolysis is typically utilized in anaerobic conditions, but nonetheless dominates cancer metabolic activity in spite of the presence of oxygen. Since the discovery the Warburg effect in the 1920s, researchers have struggled to identify whether aerobic glycolysis is a cause or consequence of carcinogenesis. Interestingly, a new theory recently emerged that challenges this widely-accepted metabolic paradigm for cancer. Known as the reverse Warburg effect, this new mechanism shows that in carcinomas such as breast cancer, the Warburg effect occurs not in cancer cells, but rather in tumor-adjacent stromal fibroblasts. These cancer-associated fibroblasts (CAFs) in the greater tumor microenvironment produce lactate - a high-energy metabolite formed as a byproduct of aerobic glycolysis - to fuel aerobic respiration and rapid tumorigenesis in neighboring cancer cells. This emerging theory emphasizes the pivotal role of the tumor microenvironment in determining whether cancer cells undergo aerobic glycolysis or aerobic respiration. Central to this lactate-linked metabolic intersection are two critical enzymes that regulate a cell's metabolic commitment - lactate dehydrogenase (LDH) and pyruvate dehydrogenase complex (PDHc). In order to clarify the mechanisms through which CAFs induce tumorigenesis in breast cancer, we plan to carry out two specific aims: (1) evaluate the enzymatic activity of LDH and PDHc, and (2) compare LDH and PDHc enzyme content. Using co-culture techniques to study the breast cancer tumor microenvironment in vitro, we will compare the enzymatic activity and enzyme content of both MCF7 breast cancer cells and CAFs to identify whether the reverse Warburg effect occurs due to post-translational enzyme activation or increased enzyme synthesis.

Page generated in 0.0715 seconds