• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 22
  • 19
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Molecular mechanisms of presynaptic plasticity and function in the mammalian brain

Weyrer, Christopher January 2018 (has links)
Synaptic plasticity describes efficacy changes in synaptic transmission and ranges in duration from tens to hundreds of milliseconds (short-term), to hours and days (long-term). Short-term plasticity plays crucial roles in synaptic computation, information processing, learning, working and short-term memory as well as its dysfunction in psychiatric and neurodegenerative diseases. The main aim of my PhD thesis was to determine the molecular mechanisms of different forms of presynaptic plasticity. Short-term facilitation increases neurotransmitter release in response to a high-frequency pair (paired-pulse facilitation; PPF) or train (train facilitation; TF) of presynaptic stimuli. Synaptotagmin 7 (Syt7) has been shown to act as residual calcium (Ca$_{res}$) sensor for PPF and TF at various synapses. Syt7 also seems to be involved in recovery from depression, whereas its role in neurotransmission remains controversial. My aim was to express Syt7 in a synapse where it is not normally found and determine how it affects short-term synaptic plasticity. Immunohistochemistry indicated that Syt7 is not localized to cerebellar climbing fibers (CFs). Wild-type (WT) and Syt7 knockout (KO) recordings at CF to Purkinje cell (CF-PC) synapses established that at near-physiological external calcium (Ca$_{ext}$) levels both genotypes displayed similar recovery from paired-pulse depression. In low Ca$_{ext}$,WT CF-PC synapses showed robust PPF, which turned out to be independent of Syt7. All my experiments strongly suggested that WT CFs do not express native Syt7, but display low Ca$_{ext}$ CF-PC PPF and TF. Thus, channelrhodopsin-2 and Syt7 were bicistronically expressed via AAV9 virus in CFs. This ectopic Syt7 expression in CFs led to big increases in low-Ca$_{ext}$ CF-PC facilitation, more than doubling PPF and more than tripling TF. While overexpression of Syt7 might turn out to have an effect on the initial release probability (pr), the observed CF-PC facilitation increase still critically depended on presynaptic Syt7 expression. And when comparing only cells in a defined EPSC1 amplitude range, the Syt7-induced increase in low-Ca$_{ext}$ PPF could not be accounted for by changes in initial pr, suggesting a general role for Syt7 as calcium sensor for facilitation. Another form of short-term plasticity, post-tetanic potentiation (PTP), is believed to be mediated presynaptically by calcium-dependent protein kinase C (PKC) isoforms that phosphorylate Munc18-1 proteins. It is unknown how generally applicable this mechanism is throughout the brain and if other proteins might be able to modulate PTP. Combining genetic (PKCαβy triple knockout [TKO] and Munc18-1SA knock-in [Munc18 KI] mice, in which Munc18- 1 cannot get phosphorylated) with pharmacological tools (PKC inhibitor GF109203), helped us show that PTP at the cerebellar parallel fiber to Purkinje cell (PF-PC) synapse seems to depend on PKCs but seems mostly independent of Munc18-1 phosphorylation. In addition, compared to WT animals, genetic elimination of presynaptic active zone protein Liprin-α3 led to similar PF-PC PTP and paired-pulse ratios (PPRs). At the hippocampal CA3-CA1 synapse previous pharmacological studies suggested that PKC mediates PTP. A genetic approach helped to show that calcium dependent PKCs do not seem to be required for CA3-CA1 PTP. Pharmacologically inhibiting protein kinase A as well as genetically eliminating Syt7 also had no effect on CA3-CA1 PTP. In addition, Ca IM-AA mutant mice, in which Ca$_{v}$2.1 channels have a mutated IQ-like motif (IM) so that it cannot get bound by calcium sensor proteins any more, not only displayed regular PTP, but also normal PPF and TF at CA3-CA1 synapses. In conclusion, my PhD thesis helped further characterize different forms of presynaptic plasticity, underlined that short-term synaptic plasticity can be achieved through diverse mechanisms across the Mammalian brain and supported a potentially general role for synaptotagmin 7 acting as residual calcium sensor for facilitation.
32

Funktionelle Untersuchungen von Ahnak durch Protein-Protein-Wechselwirkungen und in Ahnak-Defizienzmodellen

Petzhold, Daria 14 December 2007 (has links)
Ahnak ist ein ubiquitäres Protein, das an einer Vielzahl biologischer Prozesse beteiligt ist. In der Herzmuskelzelle ist Ahnak überwiegend am Sarkolemma lokalisiert und bindet an Aktin und an die regulatorischen Beta2-Untereinheit des L-Typ-Kalzium-Kanals. Das Ziel dieser Arbeit war die Funktion von Ahnak im Herzen mit Hilfe eines Knock-out-Maus-Modells und in Bindungsstudien zu untersuchen. Morphologische Untersuchungen zeigten, dass das Längenwachstum adulter Kardiomyozyten bei Ahnakdefizienz signifikant reduziert war. Die Kontraktionseigenschaften adulter isolierter Ahnak-defizienter Kardio-myozyten (im Alter von 6 Monaten) waren ebenfalls verändert. Die Kontraktions- und Relaxaktionsgeschwindigkeiten waren erhöht. Eine Erhöhung des diastolischen Kalzium-Spiegels zeigten die Kardiomyozyten schon im Alter von 3 Monaten. Diese beobachteten phänotypischen Veränderungen lassen vermuten, dass die Aktivität des L-Typ-Kalzium-Kanals erhöht ist. In dieser Arbeit konnte das PXXP-Motiv, in der C-terminalen Ahnak-Domäne, als die hochaffine Beta2-Bindungsstelle (KD ~ 60 nM) identifiziert werden. Substitution von Prolin gegen Alanin verringerte zwar die Bindung zur Beta2-Untereinheit dramatisch (KD ~ 1 µM), hob sie aber nicht auf. In weiteren Bindungsstudien zeigte sich, dass die natürlich vorkommende Missensmutation I5236T die Bindung zur regulatorischen Beta2-Untereinheit verstärkte, dagegen verminderte die PKA-abhängige Phosphorylierung der beiden Proteinpartner die Bindung. Experimente am ganzen isoliert perfundierten Herzen zeigten, dass Ahnak-Knock-Out-Herzen geringer Beta-adrenerg stimulierbar waren. Ahnak scheint wie eine physiologische Bremse des kardialen Kalzium-Kanals zu wirken. / Ahnak is an ubiquitous protein with in unique structure, which has been implicated in cell type specific functions. In cardiomyocytes, ahnak is predominantly localized at the sarcolemma and is associated with actin and with the regulatory beta2 subunit of the L-type calcium-channel. The aim of this work was to unravel the function of ahnak in the heart, using a knock-out-mouse model and binding studies. Morphological studies showed a significant decrease in the cell-length of ahnak deficient cardiomyocytes. The contractile parameters of isolated adult ahnak deficient cardiomyocytes (in the age of 6 month) were altered. The development of tension and relaxation were increased. An increase of diastolic calcium was already observed at the age of 3 month. In general the observed phenotypic changes suggested an increased activity of the L-type calcium-channel. In this study, a PXXP-motif, which locates in ahnaks C-terminus, was identified as the high affinity beta2 subunit binding site (KD ~ 60 nM). Substitution of both proline residues by alanine reduced, but did not abolish the binding (KD ~ 1 µM). Further binding studies revealed that the natural occurring ahnak missense mutation I5236T increases the binding affinity to the regulatory beta2 subunit. By contrast PKA dependant phosphorylation of both protein partners decreases the interaction. In studies with isolated perfused working heart preparations, the ahnak deficient hearts were less beta-adrenergic stimulated than hearts from wild type. Taken together ahnak seems to be a physiological brake of the cardiac calcium-channel.

Page generated in 0.072 seconds