• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 3
  • 1
  • Tagged with
  • 42
  • 42
  • 15
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

ELECTRONIC AND OPTICAL PROPERTIES OF FIRST-ROW TRANSITION METALS IN 4H-SIC FOR PHOTOCONDUCTIVE SWITCHING

Timothy Sean Wolfe (11203593) 29 July 2021 (has links)
<div>Photoconductive Semiconductor Switches (PCSS) are metal-semiconductor-metal devices used to switch an electrical signal through photoconduction. Rapidly switched PCSS under high bias voltages have shown remarkable potential for high power electronic and electromagnetic wave generation, but are dependent on precise optoelectronic material parameters such as defect ionization energy and optical absorption. These properties can be measured but are difficult to attribute definitively to specific defects and materials without the aid of high-accuracy, predictive modeling and simulation. This work combines well-established methods for first principles electronic structure calculations such as Density Functional Theory (DFT) with novel modern approaches such as Local Moment Counter Charge (LMCC) boundary conditions to adequately describe charge states and Maximally Localized Wannier Functions (MLWF) to render the summation of optical excitation paths as computationally tractable. This approach is demonstrated to overcome previous barriers to obtaining reliable qualitative or quantitative results, such as DFT band gap narrowing and the prohibitive computational cost of coupled electron-phonon processes. This work contributes electronic structure calculations of 4H-SiC doped with first-row transition metals (V through Ni) that are consistent with prior published work where applicable and add new possibilities for prospective semi-insulating metal-semiconductor systems where investigating new dopant possibilities. The results indicate a spectrum of highly localized, mid-gap, spin-dependent defect energy levels which suggest a wider range of potential amphoteric dopants suitable for producing semi-insulating material. Additionally, this work contributes MLWF-based calculations of phonon-resolved optical properties in 3C and 4H-SiC, indirect gap semiconductors, which accurately produce the expected onset of optical absorption informed by experiment. These results were further expanded upon with small V-doped cells of 4H-SiC, which while not fully converged in terms of cell size still provided a qualitative point of comparison to the ground state results for determining the true optical excitation energy required for substantial photoconductivity. The subsequent speculative analysis suggests the importance of anisotropic absorption and alternative metal defects for optimizing high current optoelectronic devices such as PCSS.</div>
42

Solid-Solution Strengthening and Suzuki Segregation in Co- and Ni-based Alloys

Dongsheng Wen (12463488) 29 April 2022 (has links)
<p>Co and Ni are two major elements in high temperature structural alloys that include superalloys for turbine engines and hard metals for cutting tools. The recent development of complex concentrated alloys (CCAs), loosely defined as alloys without a single principal element (e.g. CoNiFeMn), offers additional opportunities in designing new alloys through extensive composition and structure modifications. Within CCAs and Co- and Ni-based superalloys, solid-solution strengthening and stacking fault energy engineering are two of the most important strengthening mechanisms. While studied for decades, the potency and quantitative materials properties of these mechanisms remain elusive. </p> <p><br></p> <p>Solid-solution strengthening originates from stress field interactions between dislocations and solute of various species in the alloy. These stress fields can be engineered by composition modification in CCAs, and therefore a wide range of alloys with promising mechanical strength may be designed. This thesis initially reports on experimental and computational validation of newly developed theories for solid-solution strengthening in 3d transition metal (MnFeCoNi) alloys. The strengthening effects of Al, Ti, V, Cr, Cu and Mo as alloying elements are quantified by coupling the Labusch-type strengthening model and experimental measurements. With large atomic misfits with the base alloy, Al, Ti, Mo, and Cr present strong strengthening effects comparable to other Cantor alloys. </p> <p> </p> <p>Stacking fault energy engineering can enable novel deformation mechanisms and exceptional strength in face-centered cubic (FCC) materials such as austenitic TRIP/TWIP steels and CoNi-based superalloys exhibiting local phase transformation strengthening via Suzuki segregation. We employed first-principles calculations to investigate the Suzuki segregation and stacking fault energy of the FCC Co-Ni binary alloys at finite temperatures and concentrations. We quantitatively predicted the Co segregation in the innermost plane of the intrinsic stacking fault (ISF). We further quantified the decrease of stacking fault energy due to segregation.  </p> <p><br></p> <p>We further investigated the driving force of segregation and the origin of the segregation behaviors of 3d, 4d and 5d elements in the Co- and Ni-alloys. Using first-principles calculations, we calculated the ground-state solute-ISF interaction energies and revealed the trends across the periodic table. We discussed the relationships between the interaction energies and the local lattice distortions, charge density redistribution, density of states and local magnetization of the solutes. </p> <p><br></p> <p>Finally, this thesis reports on new methodologies to accelerate first-principles calculations utilizing active learning techniques, such as Bayesian optimization, to efficiently search for the ground-state energy line of the system with limited computational resources. Based on the expected improvement method, new acquisition strategies were developed and will be compared and presented. </p>

Page generated in 0.0623 seconds