• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Failure Development in Thick Thermal Barrier Coatings

Carlsson, Karin January 2007 (has links)
<p>Thermal barrier coatings (TBC) are used for reduction of component temperatures in gas turbines. The service temperature for turbines can be as high as 1100ºC and the components are exposed to thermal cycling and gases that will cause the component to oxidize and corrode. The coatings are designed to protect the substrate material from this, but eventually it will lead to failure of the TBC. It is important to have knowledge about when this failure is expected, since it is detrimental for the gas turbine.</p><p>The scope of this thesis has been to see if an existing life model for thin TBC also is valid for thick TBC. In order to do so, a thermal cycling fatigue test, a tensile test and finite element calculation have been performed. The thermal cycling fatigue test and finite element calculation were done to find correlations between the damage due to thermal cycling, the number of thermal cycles and the energy release rate. The tensile test was preformed to find the amount accumulated strain until damage.</p><p>The thermal cycling lead to failure of the TBC at the bond coat/top coat interface. The measurment of damage, porosity and thickness of thermally grown oxide were unsatisfying due to problems with the specimen preparation. However, a tendency for the damage development were seen. The finite element calculations gave values for the energy release rate the stress intensity factors in mode~I and mode~II that can be used in the life model. The tensile test showed that the failure mechanism is dependent of the coating thickness and it gave a rough value of the maximum strain acceptable.</p>
2

A Study of Failure Development in Thick Thermal Barrier Coatings

Carlsson, Karin January 2007 (has links)
Thermal barrier coatings (TBC) are used for reduction of component temperatures in gas turbines. The service temperature for turbines can be as high as 1100ºC and the components are exposed to thermal cycling and gases that will cause the component to oxidize and corrode. The coatings are designed to protect the substrate material from this, but eventually it will lead to failure of the TBC. It is important to have knowledge about when this failure is expected, since it is detrimental for the gas turbine. The scope of this thesis has been to see if an existing life model for thin TBC also is valid for thick TBC. In order to do so, a thermal cycling fatigue test, a tensile test and finite element calculation have been performed. The thermal cycling fatigue test and finite element calculation were done to find correlations between the damage due to thermal cycling, the number of thermal cycles and the energy release rate. The tensile test was preformed to find the amount accumulated strain until damage. The thermal cycling lead to failure of the TBC at the bond coat/top coat interface. The measurment of damage, porosity and thickness of thermally grown oxide were unsatisfying due to problems with the specimen preparation. However, a tendency for the damage development were seen. The finite element calculations gave values for the energy release rate the stress intensity factors in mode~I and mode~II that can be used in the life model. The tensile test showed that the failure mechanism is dependent of the coating thickness and it gave a rough value of the maximum strain acceptable.
3

Thermal Barrier Coatings for Diesel Engines

Thibblin, Anders January 2017 (has links)
Reducing the heat losses in heavy-duty diesel engines is of importance for improving engine efficiency and reducing CO2 emissions. Depositing thermal barrier coatings (TBCs) onto engine components has been demonstrated to have great potential to reduce heat loss from the combustion chamber as well as from exhaust components. The overall aim of this thesis is to evaluate the thermal cycling lifetime and thermal insulation properties of TBCs for the purpose of reducing heat losses and thermal fatigue in heavy-duty diesel engines. In the thermal cycling test inside exhaust manifolds, nanostructured yttria-stabilized zirconia (YSZ) performed best, followed by YSZ with conventional microstructure and then La2Zr2O7. Forsterite and mullite could not withstand the thermal cycling conditions and displayed large cracks or spallation. Two sol-gel composite coatings displayed promising thermal cycling performance results in a furnace test under similar conditions. Thermal cycling testing of YSZ coatings having different types of microstructure, in a furnace at temperatures up to 800°C, indicated that the type of microstructure exerted a great influence. For the atmospheric plasma sprayed coatings, a segmented microstructure resulted in the longest thermal cycling lifetime. An even longer lifetime was seen for a plasma spray–physical vapour deposition (PS-PVD) coating. In situ heat flux measurements inside the combustion chamber indicated that plasma-sprayed Gd2Zr2O7 was the TBC material providing the largest heat flux reduction. This is explained by a combination of low thermal conductivity and high reflectance. The plasma-sprayed YSZ and La2Zr2O7 coatings provided very small heat flux reductions. Long-term testing indicated a running-in behaviour of YSZ and Gd2Zr2O7, with a reduction in heat flux due to the growth of microcracks in YSZ and the growth of macrocracks in Gd2Zr2O7. / <p>QC 20170821</p>

Page generated in 0.1228 seconds