• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 16
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 30
  • 17
  • 14
  • 14
  • 12
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Estudo da sustentabilidade na geração de energia elétrica por usina termelétrica a carvão mineral / Study of the sustainability in energy generation by coal thermal power plant

Matias, Hernani Tabarelli 22 August 2017 (has links)
Submitted by Nadir Basilio (nadirsb@uninove.br) on 2018-04-13T17:49:06Z No. of bitstreams: 1 Hernani Tabarelli Matias.pdf: 1127572 bytes, checksum: 065ab8d88caa33ce41de09494ab4b48a (MD5) / Made available in DSpace on 2018-04-13T17:49:06Z (GMT). No. of bitstreams: 1 Hernani Tabarelli Matias.pdf: 1127572 bytes, checksum: 065ab8d88caa33ce41de09494ab4b48a (MD5) Previous issue date: 2017-08-22 / Brazil's energy and electrical matrix is one of the cleanest and most renewable in the world. Its planning and expansion considers factors such as sector performance, economic and social development. Investments in infrastructure that are aligned with the country's development policies as well as the sustainable development of the energy sector are needed. The Mines and Energy’ Ministry foresees significant participation of renewable sources in the energy matrix, but a country's energy system, particularly electric power, must rely on several sources of primary energy for maintenance and stability of the available energy in the transmission networks, because renewable sources are subject to weather and seasonality. Thus, fossil sources such as coal are used in thermoelectric plants and there is a forecast of an increase in the supply of electric energy by this source until the year 2030. This type of energy generation has as main disadvantage the pollution and environmental impact resulting from exploitation, processing and combustion of coal, such as greenhouse gas emissions, fly and bottom ashes, acidification of water resources, among others, due to the quality of the national mineral coal. In this context, the objective of this work is to study the aspects related to sustainability in the generation of electric energy by coal combustion through a unique case study of the Thermoelectric Complex located in south region of Brazil. The choice is justified because it is the largest thermoelectric complex in installed capacity in Brazil. This study has an exploratory and qualitative approach. Documents of the energy sector and environment, reports of the object of study, semi-structured interview with environment worker and a technical visit complete the sources of evidence used in this study that were analyzed the contents and triangulated. The main results of the research are the impacts on the environment, such as groundwater contamination and atmospheric emissions, ash generation and management. Among the benefits found are the development of local companies and suppliers, employment generation and technical and scientific knowledge. It is concluded that a well-structured environmental management system is an important tool so that the pros and cons of this form of electric power generation are communicated and mitigated, besides evidencing the importance of this enterprise for the regional development, since it is an important mover of the local economy. / A matriz energética e elétrica do Brasil é uma das mais limpas e renováveis no mundo. Seu planejamento e expansão consideram fatores, tais como o desempenho setorial, econômico e social. Para tal, são necessários investimentos em infraestrutura que estejam alinhados às políticas de desenvolvimento do país, bem como do desenvolvimento sustentável do setor energético. O Ministério de Minas e Energia prevê a participação expressiva de fontes renováveis na matriz energética, mas o sistema energético, particularmente o elétrico, de um país deve valer-se de fontes diversas de energia primária para manutenção e estabilidade da energia disponível nas redes de transmissão e distribuição, pois as fontes renováveis estão sujeitas às intempéries e sazonalidades. Dessa forma, fontes fósseis como o carvão mineral são utilizadas em usinas termelétricas e há previsão de aumento de oferta de energia elétrica por essa fonte até o ano de 2030. Este tipo de geração de energia tem como principal desvantagem a poluição e impacto ambiental decorrente da exploração, beneficiamento e combustão do carvão mineral, como as emissões de gases do efeito estufa, as cinzas leves e pesadas, acidificação dos recursos hídricos entre outros, devido a qualidade do carvão mineral nacional. Neste contexto, o objetivo deste trabalho é estudar os aspectos relacionados à sustentabilidade na geração de energia elétrica por combustão de carvão mineral, por meio de estudo de caso único do Complexo Termelétrico localizado na região sul do Brasil. A escolha se justifica por ser o maior complexo termelétrico em capacidade instalada no Brasil, da importância econômica para a região e estabilidade do Sistema Interligado Nacional. Este estudo tem caráter exploratório e abordagem qualitativa. Como fontes de evidencias foram realizados o levantamento do referencial teórico, documentos do setor energético e meio ambiente, relatórios do objeto de estudo, entrevista semiestruturada com funcionária do setor de meio ambiente e uma visita técnica. Os dados foram analisados e triangulados para a conclusão do estudo. Como principais resultados da pesquisa estão os impactos ao meio ambiente, tais como a contaminação de águas subterrâneas e emissões atmosféricas, geração de cinzas e sua gestão. Entre os benefícios encontrados destacam-se o desenvolvimento de empresas e fornecedores locais, geração de emprego e conhecimento técnico e cientifico. Conclui-se que um sistema de gestão ambiental bem estruturado é uma ferramenta importante para que os prós e contras dessa forma de geração de energia elétrica sejam comunicados e mitigados, além de evidenciar a importância desse empreendimento para o desenvolvimento regional, pois é um importante movimentador da economia local.
62

Performance and cost evaluation to inform the design and implementation of Organic Rankine Cycles in New Zealand

Southon, Michael Carl January 2015 (has links)
The aim of this thesis is to evaluate ORC systems and technologies from an energy and economic perspective. ORC systems are a growing renewable electricity generation technology, but New Zealand has limited local skills and expertise for identifying ORC resource opportunities and subsequently developing suitable technologies at low cost. For this reason, this thesis researches ORC technology, resource types, and international development, with the aim to determine guidelines for how to cost-effectively develop ORC systems, and to make recommendations applicable to furthering their development within a New Zealand context. This thesis first uses two surveys, one of commercial ORC installations, and a second of economic evaluations of ORC systems in literature, to determine what resources and economic scenarios are supportive of commercial development. It is found that geothermal resources provide the largest share of ORC capacity, with biomass and waste-heat recovery (WHR) being developed more recently. The surveys also found that countries with high electricity prices or policy interventions have developed a wider range of resources using ORC systems. This thesis then undertakes an EROI evaluation of ORC electricity generation systems using a combination of top-down and process based methodologies. Various heat sources; geothermal, biomass, solar, and waste heat are evaluated in order to determine how the utilised resource can affect energy profitability. A wide range of EROIstnd values, from 3.4 – 22.7 are found, with solar resources offering the lowest EROIs, and geothermal systems the highest. Higher still EROI values are found to be obtainable with longer system lifetimes, especially for WHR systems. Specific engineering aspects of ORC design and technology such as high-side pressure, heat storage, modularity, superheating, pinch-point temperature difference, and turbine efficiency are evaluated in terms of economic performance, and a variety of general conclusions are made about each. It is found that total system thermo-economic optimisation may not lead to the highest possible EROI, depending on the objective function. Lastly, the effects of past and potential future changes to the markets and economies surrounding ORCs are explored, including the New Zealand electricity spot price, steel and aluminium prices, subsidies, and climate policy. Of the subsidy types explored, it is found that directly subsidising ORC system capital has the greatest effect on the economic performance of ORC systems, as measured by common metrics. In conclusion, this thesis finds that ORC systems have a limited applicability to New Zealand’s electricity market under current economic conditions outside of geothermal and off-grid generation, but changes to these conditions could potentially make their development more viable. The author recommends that favourable resources should be developed using systems that provide high efficiencies, beyond what might provide the best economic performance, in order to increase EROI, and reduce the future need for costly investments into increasingly less favourable resources.
63

Avaliação do desempenho de uma Rede 802.11g em uma Usina Termoelétrica. / Evaluation of the performance of an 802.11g Network in a Thermoelectric Plant.

VALADARES, Dalton Cézane Gomes. 01 May 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-05-01T13:36:45Z No. of bitstreams: 1 DALTON CÉZANE GOMES VALADARES - DISSERTAÇÃO PPGCC 2015..pdf: 6500440 bytes, checksum: f8b244a64bf81646d322b68023c204d9 (MD5) / Made available in DSpace on 2018-05-01T13:36:45Z (GMT). No. of bitstreams: 1 DALTON CÉZANE GOMES VALADARES - DISSERTAÇÃO PPGCC 2015..pdf: 6500440 bytes, checksum: f8b244a64bf81646d322b68023c204d9 (MD5) Previous issue date: 2015-07 / No âmbito industrial, é sabido que as redes sem fio são as mais indicadas, já que possuem baixo custo de implantação, maior flexibilidade e são menos invasivas ao ambiente. Na literatura, dentre as tecnologias de rede sem fio aplicadas em ambientes industriais, pouco destaque é dado às tradicionais 802.11a/b/g, conhecidas pelo uso doméstico e chamadas WiFi (acrônimo de Wireless Fidelity). A pesquisa, ora descrita, tem como objetivo avaliar o desempenho de uma rede 802.11g em um ambiente industrial de uma usina termoelétrica (UTE). O cenário de análise foi constituído de 4 enlaces de comunicação, com o principal deles possuindo uma distância de, aproximadamente, 150 metros. Para a avaliação do desempenho da rede, foram consideradas três métricas: taxa de perda de pacotes, Taxa de Transferência e tempo de resposta. Os testes foram realizados por meio do estabelecimento de comunicação entre pontos dentro da sala de motores (primeiro enlace) e o servidor localizado na sala de administração (último enlace). Os resultados obtidos para potência do sinal foram comparados aos valores estimados por meio do modelo Log Distance Path Loss. Observou-se que o desempenho da comunicação realizada pela rede não sofreu degradação significativa, mesmo em um ambiente sujeito à interferência eletromagnética e demais características intrínsecas a uma UTE. Após a análise concluída, verificou-se a viabilidade do uso da tecnologia 802.11g para comunicação de dados em ambientes com características similares às de uma usina termoelétrica. / In industry, it is known that wireless networks are the most suitable, since they have low implementation cost, greater flexibility and are less invasive to the environment. In the literature, among the wireless network technologies applied in industrial environments, little attention is given to traditional 802.11a/b/g, known by the domestic use and by the acronym WiFi (Wireless Fidelity). This work aims to evaluate the performance of an 802.11g network in an industrial environment of a thermal power plant. The scenario consists of four communication links, with the main one having a distance of approximately 150m. For the evaluation of network performance, we considered three metrics: packet loss rate, bandwidth and response time. Tests were carried out through the establishment of communication between points within the engine square (first link) and the server located in the boardroom (last link). The obtained results for the signal strength at each point were compared with the estimated values by the Log Distance Path Loss Model. It was verified that the performance of the communication performed by the network did not suffer significant degradation, even being in an environment subject to considerable electromagnetic interference. After the concluded analysis, it was found feasibility of using 802.11g technology for data communication in environments with characteristics similar to those of a thermal power plant.
64

Application of improved particle swarm optimization in economic dispatch of power systems

Gninkeu Tchapda, Ghislain Yanick 06 1900 (has links)
Economic dispatch is an important optimization challenge in power systems. It helps to find the optimal output power of a number of generating units that satisfy the system load demand at the cheapest cost, considering equality and inequality constraints. Many nature inspired algorithms have been broadly applied to tackle it such as particle swarm optimization. In this dissertation, two improved particle swarm optimization techniques are proposed to solve economic dispatch problems. The first is a hybrid technique with Bat algorithm. Particle swarm optimization as the main optimizer integrates bat algorithm in order to boost its velocity and to adjust the improved solution. The second proposed approach is based on Cuckoo operations. Cuckoo search algorithm is a robust and powerful technique to solve optimization problems. The study investigates the effect of levy flight and random search operation in Cuckoo search in order to ameliorate the performance of the particle swarm optimization algorithm. The two improved particle swarm algorithms are firstly tested on a range of 10 standard benchmark functions and then applied to five different cases of economic dispatch problems comprising 6, 13, 15, 40 and 140 generating units. / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)
65

Comparaison du captage du CO2 en postcombustion par des solutions d'ammoniaque et d'amines organiques : Évaluation en contacteurs direct et indirect, par des approches cinétiques, thermodynamiques et par modélisation / Comparison of post-combustion CO2 capture by solutions of ammonia and organic amines : Assessment using direct and indirect contactors by kinetic, thermodynamic approaches and modeling

Toro Molina, Carol 26 June 2013 (has links)
Actuellement, la production d’énergie est de plus en plus associée à une hausse simultanée d’émissions de Gaz à Effet de Serre (GES). Malgré les inquiétudes concernant les GES dans l’atmosphère, les énergies fossiles resteront probablement longtemps la principale source d’énergie primaire à l’échelle mondiale. Le procédé de captage de CO2, principal gaz à effet de serre, généralement préconisé est un procédé d’absorption chimique avec de la monoéthanolamine (MEA). Ce procédé pose de nombreux problèmes comme le coût de la régénération de l’amine. Cette étude s’intéresse à une alternative consistant à absorber chimiquement le dioxyde de carbone dans une solution aqueuse d’ammoniac. Par ailleurs, dans le but d’améliorer les procédés de captage et d’intensifier le transfert gaz-liquide, des techniques de captage à base de membranes (contacteurs membranaires) ont été développées et couplées à l’absorption chimique. Dans un premier temps des mesures d’absorption du CO2 à partir d’une solution aqueuse d’ammoniac ont été réalisées. Ces mesures ont été effectuées entre 278 et 303 K dans un réacteur fermé de type cellule de Lewis. Le taux de charge maximum, la pression partielle du CO2 à l’équilibre ont été déterminés. Les performances ont été comparées à celles de solvants conventionnels tels que la MEA et la N-méthyldiéthanolamine (MDEA). Dans un second temps, des mesures d’absorption à travers un contacteur membranaire ont été réalisées. L’efficacité de captage est étudiée en fonction de la nature des matériaux constituants la membrane et des paramètres opératoires. Les résultats obtenus montrent qu’il est possible de capter le CO2 par l’ammoniaque à travers une membrane avec une efficacité de captage supérieure à 90 %. La membrane limite les pertes d’ammoniaque mais ne les élimine pas. La simulation du fonctionnement de la centrale thermique alimentée au charbon pulvérisé (CP) intégrant le captage de CO2 a été réalisée à l’aide du logiciel Aspen Plus. Les fumées issues de la post-combustion sont captées par différents solvants. Une étude paramétrique a été conduite afin de préciser les conditions optimales pour capter le CO2 par l’ammoniaque. Des comparaisons de dépense énergétique dans le cas de la régénération pour les solvants NH3, MEA et MDEA ont été réalisées. L’étude comparative suggère que l’absorption chimique utilisant l’ammoniaque comme solvant est un des procédés les plus intéressants pour la centrale CP. / Nowadays rising energy production is associated with increasingly greenhouse gases (GHG) emissions. Despite of concerns about GHG emissions in atmosphere, fossil fuels will probably remain the main source of primary energy for a long time. The process of CO2 (the main greenhouse gas) capture, generally recommended is the chemical absorption with monoethanolamine (MEA). This process has many problems such as the regeneration cost of amine. This study examines an alternative which consists in absorbing carbon dioxide by ammonia aqueous solution. Moreover, membranes have been developed and coupled to chemical absorption to improve the capture processes and to intensify the gas-liquid transfer. Firstly measurements of CO2 absorption from an aqueous ammonia solution have been conducted. These measurements have been made between 278 and 303 K in a closed reactor type Lewis cell. Maximum CO2 loading, CO2 partial pressure at equilibrium have been determined. The solvents performances have been compared with respect to conventional solvents such as MEA and N-methyldiethanolamine (MDEA). Secondly absorption measurements through a membrane contactor have been made. The influence of the material nature constituting the membrane and operating parameters on the capture efficiency has been studied. The results have shown that it is possible to capture CO2 from ammonia through a membrane with a capture efficiency greater than 90 %. The membrane limits ammonia losses but does not eliminate it. Operation simulation of the thermal power plant fed with pulverized coal (CP) including CO2 capture has been performed using the software Aspen Plus. The flue gases containing CO2 from post-combustion have been captured by different solvents. A parametric study has been conducted to clarify the optimal conditions to capture CO2 by ammonia. Comparisons of energy consumption in the case of solvent regeneration for NH3,MEA andMDEA have been performed. The comparative study suggests that the use of ammonia as a solvent in chemical absorption is the most interesting process for the central CP.
66

Ověření různých druhů popílků pro výrobu umělého kameniva / Verification of different types of fly ash for production of artificial aggregate

Zahálka, Milan January 2014 (has links)
Diploma thesis gives an overview of artificial lightweight aggregates based on fly ash. Fly ash such as the residues of coal burning is currently one of the most used secondary raw materials for new building materials for research papers. The results shows that the secondary energy products are not just fully substitute the primary component, but in many cases improves the final properties of building products. Wide complex of fly ashes not only from domestic sources was tested and it`s main properties important for it`s further application was determined. Laboratory production of artificial aggregates based on fly ash made by sintering and also by cold bonding and following manufacture of artificial fly ash aggregates in technological conditions are also solved. The thesis is simultaneously concentrate on review of the suitability of fly ash aggregates in lightweight concrete.It was found that the highest quality fly ash for the production of sintered fly ash aggregate is fly ash and FBC ash is the best for the production of cold bonded aggregates. It was also verified that both types of aggregates are applicable to lightweight concrete class LC 20/22. The vast majority of manufactured aggregates is suitable for the production of lightweight concrete class LC 30/33. It was demonstrated that the sintered fly ash aggregates can be also used for high strength lightweight concrete class LC 50/55. Tests have also verified that all tested fly ashes and products produced from them meet the requirements of legislation on environment.
67

Sorpční tepelné čerpadlo / Sorption heat pump

Veselý, Josef January 2016 (has links)
This thesis deals with the issue of sorption heat pumps. The theoretical part is devoted to a detailed description of the function of adsorption and absorption heat pumps. For a better understanding of the adsorption cycle is computed theoretical thermal cycle and the heating factor of zeolite adsorption heat pump are computed. The practical part is focused on the design absorption heat pump that works in conjunction with a natural gas boiler. The pump is designed for cooling flue gas condensing boiler and the possible use of thermal energy from other low-temperature source. The thesis contains a thermal calculations, engineering design and structural design of the heat pump.
68

発電ボイラの変圧運転における蒸気温度の適応ロバスト制御

早川, 義一, 尾形, 和哉, 松村, 司郎 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(A)(2) 課題番号:08555101 研究代表者:早川 義一 研究期間:1996-1997年度
69

Posouzení možnosti připojení kogenerační výrobny 138 MW v Prostějově / The assessment of connectivity 138 MW combined heat and power plant in Prostějov

Vacek, Tomáš January 2011 (has links)
The goal of this project is to test the possibility to connect the Cogenerational generation of power 138 MW (still in the development stage) to the control room 110 kV in Prostejov production. This merge would product the electrical energy as well as the heat energy for all local area. In this dissertation we will be considering the solution of the steady state (stationary state) of system with the voltage level of 110kV, as well as the influence of the generation of power on this system, there by the suggesting a connection. The Congenerational production indicates higher effectiveness in the transformation of energy during primary production process due to the production of heat energy as well as the electrical energy from the primary power sources. In our country, as well as around the world, commonly used fuels are fossil fuels- coal, crude oil, and gas. As the demand for energy grows, those supplies are slowly running out. Not to mention that those fuels have a negative environmental impact. They are a source of carbon, which causes damage to the atmosphere and leads to global warming. Power plants which do not produce carbon are much safer for the environment, and much more productive. However, the residue of this energy is challenging to dispose of. Nuclear energy has common attributes with renewing the sources of energies that are extremely friendly to our environment. Nuclear power plants also produce enough energy and with the usage of Fourth generation reactors, they will be able to recycle the nuclear fuels. Today, more importance is put on renewing sources which are more gentle for the environment. In the near future, CEZ Company, the largest producer of electric energy is planning to use water energy. Water energy comes from water plants or dams. Other ecological forms of energy include geothermal and solar energies. These two types of energy are not as applicable for our geographical position. Geothermal energy is commonly used on islands where there is an abundance of natural hot springs. The most discussed source of energy is bioenergy. It uses natural wood sources, recycled wood products, and applies bioenergy as a main source for thermal power plants.
70

Životní cyklus solární elektrárny, efektivita a návratnost / The Life Cycle of Solar Power, Efficiency and Return

Kubín, David January 2013 (has links)
This master’s thesis named “The Life Cycle of Solar Power, Efficiency and Return” is divided into seven chapters and focuses on the utilization of solar radiation in photovoltaic power stations and solar thermal power stations. The first chapter of this thesis familiarizes the reader with issues concerning renewable resources of energy and presents an overview of the focus of each chapter. The following second chapter is occupied with a topical research of renewable resources of energy utilization in Europe. Further the author presents a brief glance back at the past of solar energy utilization and also a prediction of future solar energy utilization in the Czech Republic. The chapter named “Specification and parameterization of individual technologies” contains an overview of today’s most utilized photovoltaic cells and panels together with an overview of utilized solar collectors and solar thermal power stations. In the following chapter named “Concretization of typical applications and realizations of photovoltaic and solar thermal power stations and determination of all related parameters” the author describes further components of photovoltaic and solar thermal systems. The economical aspect of photovoltaic component production together with an overview of utilized photovoltaic technologies is presented in this chapter. The problem of recycling photovoltaic applications and the current legislative situation regarding this issue in the Czech Republic is also outlined within this chapter. In the fifth chapter of this master’s thesis the author presents mathematical models of a photovoltaic and a solar thermal power station with the focus on economic aspects of investment efficiency assessment. Within this master’s thesis a simulation program in the computational software program Mathematica was created by the author. This program allows a calculation of economic efficiency and return of photovoltaic power station investments. The results of executed simulations are presented in the sixth chapter of this thesis. The last chapter contains an appraisal and summary of results achieved by the author of this thesis.

Page generated in 0.0633 seconds