• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Poly(NIPAAm-co-AAm)-gold nanoshell composites for optically-triggered cancer therapeutic delivery

Strong, Laura 24 July 2013 (has links)
Chemotherapy regimens, one of the most common cancer treatments, are often dictated by dose-limiting toxicities. Also, the largest hurdle for translating novel biological therapies such as siRNA into the clinic is lack of an efficient delivery mechanism to get the therapeutic into malignant cells. Both of these situations would benefit from a minimally-invasive controlled release system that only delivers a therapeutic to the site of malignant tissue. This thesis presents work towards the creation of such a delivery platform using two novel material components: a thermally responsive poly[N-isopropylacrylamide-co-acrylamide] (NIPAAm-co-AAm) hydrogel and gold-silica nanoshells. Thermally responsive hydrogels undergo a physical property transition at their lower critical solution temperature (LCST). When transitioning from below to above the LCST, the hydrogel material expels large amounts of water and absorbed molecules. This phase change can be optically triggered by embedded gold-silica nanoshells, which rapidly transfer near-infrared (NIR) light energy into heat energy due to the surface plasmon resonance phenomena. When this material is loaded with absorbed drug molecules, drug release can be externally triggered by exposure to an NIR laser. Initial characterization of this material was accomplished using bulk hydrogel-nanoshell composites. Poly(NIPAAm-co-AAm)-nanoshell composites were synthesized via free radical polymerization. The LCST of the poly(NIPAAm-co-AAm) hydrogels was determined to be from 39-45 deg C, or slightly above physiologic temperature. The material was swollen in a drug solution of either doxorubicin (a common chemotherapeutic) or a 21bp dsDNA olgio (a model molecule for siRNA). Composites were then exposed to an 808 nm laser, which was found to trigger release of the therapeutics from the composite material. Further work has been done in translating this composite material to nano-scale sized particles, such that it could be injected intravenously, passively accumulate in tumor tissue, and be externally triggered to release therapeutics by exposure to an NIR laser. Sub-micron composite particles were synthesized using dissolvable gelatin templates with 500 nm wells. Analysis by transmission electron microscopy (TEM) indicates that these particles consist of gold nanoshells surrounded by a hydrogel coating. Dynamic light scattering (DLS) measurements were used to show that these particles display the same thermal properties as seen in the bulk material: collapsing in response to increased temperatures or NIR light exposure. Ultimately, the work in this thesis advances the development of a minimally-invasive, optically-triggered drug delivery platform.
2

Thermally Responsive Hydrogel-Nanoparticle Composite Materials for Therapeutic Delivery

Strong, Laura Elizabeth January 2014 (has links)
<p>Cancer is currently the second leading cause of death in the United States. Although many treatment options exist, some of the most common, including radiotherapy and chemotherapy, are restricted by dose-limiting toxicities. In addition, the largest hurdle for translating novel biological therapies such as siRNA into the clinic is lack of an efficient delivery mechanism to get the therapeutic into malignant cells. This work aims to improve this situation by engineering a minimally invasive controlled release system that specifically delivers therapeutics to the site of malignant tissue. This platform consists of two novel material components: a thermally responsive poly[N-isopropylacrylamide-co-acrylamide] (NIPAAm-co-AAm) hydrogel and gold-silica nanoshells. Therapeutic molecules are encapsulated within a poly(NIPAAm-co-AAm) hydrogel carrier, leading to increased serum stability, circulation time, and decreased exposure to off-site tissues. Additionally, gold-silica nanoshells embedded within this hydrogel will be used to optically trigger therapeutic release from the carrier. This hydrogel-nanoshell composite material was designed to be swollen under physiologic conditions (37 oC), and expel large amounts of water and absorbed molecules at higher temperatures (40-45 oC). This phase transition can be optically triggered by embedded gold-silica nanoshells, which rapidly transfer near-infrared (NIR) light energy into heat due to the surface plasmon resonance phenomena. NIR light can deeply penetrate biological tissue with little attenuation or damage to tissue, and upon exposure to such light a rapid temperature increase, hydrogel collapse, and drug expulsion will occur. Ultimately, these drug-loaded hydrogel-nanoshell composite particles would be injected intravenously, passively accumulate in tumor tissue due to the enhanced permeability and retention (EPR) effect, and then can be externally triggered to release their therapeutic payload by exposure to an external NIR laser. This dissertation describes the synthesis, characterization, and validation of such a controlled therapeutic delivery platform.</p><p>Initial validation of poly(NIPAAm-co-AAm)-gold nanoshell composites to act as a material in site-specific cancer therapeutic delivery was accomplished using bulk hydrogel-nanoparticle composite disks. The composite material underwent a phase transition from a hydrated to a collapsed state following exposure to NIR light, indicating the ability of the NIR absorption by the nanoshells to sufficiently drive this transition. The composite material was loaded with either doxorubicin or a DNA duplex (a model nucleic acid therapeutic), two cancer therapeutics with differing physical and chemical properties. Release of both therapeutics was dramatically enhanced by NIR light exposure, causing 2-5 fold increase in drug release. Drug delivery profiles were influenced by both the molecular size of the drug as well as its chemical properties. </p><p>Towards translation of this material into in vivo applications, the hydrogel-nanoshell composite material was synthesized as injectable-sized particles. Such particles retained the same thermal properties as the bulk material, collapsing in size from ~330 nm to ~270 nm upon NIR exposure. Furthermore, these particles were loaded with the chemotherapeutic doxorubicin and NIR exposure triggered a burst release of the drug payload over only 3 min. In vitro, this platform provided increased delivery of doxorubicin to colon carcinoma cells compared to free-drug controls, indicating the irradiated nanoshells may increase cell membrane permeability and increase cellular uptake of the drug. This phenomena was further explored to enhance cellular uptake of siRNA, a large anionic therapeutic which cannot diffuse into cells easily. </p><p>This work advances the development of an injectable, optically-triggered delivery platform. With continued optimization and in vivo validation, this approach may offer an novel treatment option for cancer management.</p> / Dissertation
3

Synthesis and Characterization of Novel Nanomaterials: Gold Nanoshells with Organic- Inorganic Hybrid Cores

Peterson, Alisha D. 23 June 2010 (has links)
Gold nanoshells, a material generally composed of a core of silica surrounded by a thin shell of gold, are of great interest due to their unique and tunable optical properties. By varying the shell thickness and core size, the absorption and scattering properties are greatly enhanced. The nanoshells can be made to absorb or scatter light at various regions across the electromagnetic spectrum, from visible to the near infrared. The ability to tune the optical properties of nanoshells allows for their potential use in many different areas of research such as optical imaging, tumor ablation, drug delivery, and solar energy conversion. The research in this thesis focused on the synthesis and characterization of two novel gold nanoshell materials containing thermally-responsive, organic-inorganic hybrid layers. One type of material was based on a two-layer particle with a thermally responsive hybrid core of N-isopropylacrylamide (NIPAM) copolymerized with 3-(trimethoxysilyl)propyl methacrylate (MPS) that was then coated with a thin layer of gold. The second material was a three-layer particle with a silica core, a thermally responsive copolymer of NIPAM and MPS middle layer and an outer shell of gold. Various techniques were used to characterize both materials. Transmission electron microscopy (TEM) was used to image the particles and dynamic light scattering (DLS) was used to determine particle size and the temperature response. Additionally, UV-Vis spectroscopy was used to characterize the optical properties as a function of temperature.
4

Structural modification of poly(n-isopropylacrylamide) for drug delivery applications

Chang, Kai 16 September 2013 (has links)
Polymeric biomaterials have become ubiquitous in modern medical devices. ‘Smart’ materials, materials that respond to external stimuli, have been of particular interest for biomedical applications such as drug delivery. Poly(n-isopropylacrylamide) (pNIPAAm) is the best studied thermally responsive, biocompatible, ‘smart’ polymer and has been integrated into many potential drug delivery devices; however, the architectural design of the polymer in these devices is often overlooked. My research focus was the exploration of pNIPAAm architecture for biological applications. Two new biomaterials were synthesized as a result. Architectural modification of linear pNIPAAm was used to synthesize a well-defined homopolymer pNIPAAm with a sharp transition slightly above normal body temperature under isotonic conditions. This polymer required a combination of polymerization and control techniques including controlled radical polymerization, hydrogen bond induced tacticity, and end-group manipulation. The synthesis of this polymer opened up a variety of biomedical possibilities, one of which is the use of these polymers in a novel hydrogel system. Through the use of the controlled linear pNIPAAm synthesized through chain architectural modification, hydrogels with physiological transition temperatures were also synthesized. These hydrogels showed greater shrinking properties than traditional hydrogels synthesized in the same manner and showed physiological mechanical properties. Highly branched pNIPAAm was also optimized for biological applications. In this case, the branching reduced the efficacy of end-groups in transition temperature modification but increased the efficacy of certain copolymers. The resulting biomaterial was incorporated into a nanoparticle drug delivery system. By combining gold nanoparticles with highly branched pNIPAAm, which was designed to entrap small molecule drugs, a hybrid system was synthesized where heating of the nanoparticle through surface plasmon resonance can trigger drug release from the pNIPAAm. This system proved to be easy to synthesize, effective in loading, and controlled in release. As shown from the applications, architectural control of pNIPAAm can open up new possibilities with this polymer for biomedical applications. Small structural changes can lead to significant changes in the bulk properties of the polymer and should be considered in future pNIPAAm based medical devices.
5

Study of Thermally Responsive Ionic Liquids for Novel Water Desalination and Energy Conversion Applications

Zhong, Yujiang 04 1900 (has links)
The rapidly expanding of the global population in the 21st-century forces people facing two serious problems: water scarcity and energy shortage. Enormous continuous studies focus on providing enough fresh water and energy in a sustainable way. This thesis aims at exploring novel membrane processes based on thermally responsive ionic liquids with the upper critical solution temperature (UCST ILs) for water desalination and energy conversion from low-grade heat energy to electricity. A UCST IL protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was first experimentally studied as a novel draw solute in a thermal forward osmosis (FO). A 3.2 M [Hbet][Tf2N] solution can be obtained via spontaneous phase separation from an IL and water mixture at room temperature. By heating and maintaining the temperature above 56°C, this solution can draw water from high-salinity solution up to 3.0 M, 5 times salty as the sea water. The IL draw solution can be easily regenerated by phase separation. Conducting the FO process at higher temperatures can also increase the water flux. According to the different choices of the freshwater polishing step, the electric energy consumption in this novel process was estimated as 26.3% to 64.2% of conventional one-step sea water reverse osmosis. Two UCST ILs with better performance, [Hbet][Tf2N] and choline bis(trifluoromethylsulfonyl)imide ([Choline][Tf2N]), were selected as the agents in a novel closed-loop thermally responsive IL osmotic heat engine (TRIL-OHE) to convert low-grade thermal energy to electricity. The specific energies of the [Hbet][Tf2N] system and the [Choline][Tf2N] system are 2500 kJ/t and 3700 kJ/t, which are 2.7 and 4.0 times of the seawater and river water system, respectively. The maximum power density measured from a commercial FO membrane is 1.5 W/m2 for the [Hbet][Tf2N] system and 2.3 W/m2 for the [Choline][Tf2N] system, leaving a big room to improve if highly permeable membranes are used. Another notable advantage of the TRIL-OHE is the heat released from the cooling stage can be largely recovered. A rigorous energy balance showed with a 70% heat recovery, the energy efficiency could be increased from around 20% to 70% of the Carnot efficiency in both UCST ILs systems.
6

The Development of Transparent, Processable, Thermally-Responsive Coatings

Roland, Christopher David 01 June 2012 (has links) (PDF)
Polymer matrices are commonly used as guest-host systems for organic chromophores for use in non-linear optical materials. The chromophores must be aligned or poled in an electric field in order to impart anisotropy and non-linear activity to the material. This poling process raises several issues, the two largest being the eventual relaxation of the chromophores back into random orientations due to brownian motion, and high molecular weight polymer matrices limiting chromophore mobility during poling. The prevention of this relaxation process is an area of significant interest, especially in applications that require long term coating stability and activity. In this study, a polymer matrix is synthesized that seeks to solve both of these problems with one system. The ideal system would be one that allows for chromophore mobility during processing, but once chromophores have reached the desired orientation, limits mobility and relaxation during in-service usage. A copolymer of methyl methacrylate and a Diels-Alder adduct cross-linking monomer was synthesized in order to meet these challenges. This polymer was blended with commercially available acrylic polymer and organic chromophore molecules in order to test the viability of the solution. It was found that at the percent composition of cross-linker being utilized in the study, the Diels-Alder linkages were not reforming in any measurable amount due to the low amount of Diels-Alder active monomer units. This led to the development of a new system based on mixing polyfuran based polymers with polymaleimide based polymers during processing. This method allows for high amounts of cross-linking after processing ceases, which achieves both initial goals of the project, as well as allowing facile synthesis of the desired polymer components. Another attempt to address these issues in polymer matrix formation led to the use of a novel inimer system. The cross-linking agent was also the polymerization initiator, and these functionalities were separated by a Diels-Alder linkage that would fall apart upon exposure to thermal stimulus. These polymers were synthesized and isolated easily, although in some cases gelation occurred. In order to observe the extent of the cross-linking inimer being incorporated into the matrix, cleavage experiments were performed to induce the breaking of the Diels-Alder adduct. Analyzing the Diels-Alder cleaved polymer led to an interesting result: all polymers showed an increase in apparent molecular weight when analyzed by gel permeation chromatography. The increase in molecular weight occurring upon cleavage of main chain bonds has never before been observed in literature. The explanation proposed was that the polymer adopted a "ropeball" like topology consisting of tightly coiled loops and knots. Upon cleavage of the cross-links, the ropeball was able to unwind into a much more linear topology, occupying a much larger hydrodynamic volume. This increase in hydrodynamic volume would cause the gel permeation chromatography results to show an apparent increase in molecular weight.
7

A Spin-Coated Thermoresponsive Substrate for Rapid Cell Sheet Detachment and Its Applications in Cardiac Tissue Engineering

Patel, Nikul Girishkumar 15 May 2014 (has links)
No description available.
8

Adjustable Thermo-Responsive cell carrier and implants from three armed macromers

VEJJASILPA, KETPAT 30 May 2024 (has links)
Mechanical stimulation plays a crucial role in promoting cell differentiation. However, applying physical force directly to cells requires complex equipment and a sterile environment, posing challenges. To overcome this, stimuli-responsive biomaterials or 4D scaffolds can serve as an alternative platform for mechanical stimulation. These scaffolds, fabricated using advanced 3D printing techniques, can apply the necessary force to cells. To optimize their functionality, bioactive molecules or extracellular matrices can be incorporated or decorated on their surfaces. This thesis proposal focuses on developing a versatile material platform that allows customization through systematic composition adjustment and on-demand printing, while also offering surface modification capabilities. The primary objective is to create a novel cell carrier platform using thermo-responsive polymers. By manipulating the additive monomer compositions, we can finely adjust properties such as the transition temperature of the polymers, tailoring them to specific requirements. Furthermore, this platform will enable the fabrication of complex three-dimensional biomaterial structures with controllable porosity, a critical aspect of biomaterial design. Leveraging the capabilities of three-dimensional printing technology, we can program and achieve desired porosity levels in the printed structures, providing enhanced flexibility for biomaterial design. The development of thermo-responsive scaffolds involved three distinct stages aimed at designing an optimized platform that effectively operates within the physiological range while ensuring cell viability. One of the key challenges was to achieve a balance between thermoresponsive behavior and biocompatibility. In the initial stage, we investigated the interplay between a crosslinkable three-armed macromer (trimethylolpropane triacrylate-TMPTA) and various monomers (N-isopropylacrylamide-NiPAAm, methyl methacrylate-MMA, dimethylaminoethyl acrylate-DMAEA, 4-acryloylmorpholine-AMO) using thermally induced solution polymerization. NiPAAm, known for its thermoresponsive properties, was selected despite its limited biocompatibility. DMAEA was chosen to adjust the polymer network transition temperature by introducing cationic charge, which disrupts the coil-globule effect of PNiPAAm and provides cell adhesiveness of the composition. Additionally, the hydrophilic monomer AMO was incorporated to further fine-tune the polymeric network. We examined the behavior of these components within the physiological range and their integration into the PNiPAAm network, establishing significant correlations between the transition temperature of the polymer and the crosslinker and monomers in their soluble condition. In the second stage of our research, we introduced photo-induced polymerization to enhance the crosslinking ratio. By utilizing this method, we successfully fabricated photo-polymerized mixtures (photoresists) into thermo-responsive discs, enabling us to study their swelling behavior between 37℃ and 25℃. Our findings revealed that the swelling behavior could be adjusted by varying the ratios of the crosslinker and monomers in the experimental groups. Through careful experimentation, we identified a suitable composition (3% w/w TMPTA, 80% w/w NiPAAm, 15% w/w DMAEA, 5% w/w AMO, and 4% w/w photo-initiator(PI)) that required minimal crosslinking incorporation while still retaining thermo-responsiveness. Furthermore, we conducted a preliminary biocompatibility study by fabricating the mixture into thin-films and cultivating them with L929 fibroblast cells. In the third and final stage, we utilized the optimized formulations from the previous stage to build thermo-responsive 3D scaffolds using continuous Digital Light Processing (cDLP) printing. We investigated the effects of various parameters, such as curing time and monomer composition, on the swelling property of the scaffolds. Additionally, we introduced glycofurol (GF) as a photo-polymerization solvent, which allowed us to produce scaffolds with improved resolution and reduced printing time. The resulting optimized scaffolds, with a composition of 3% w/w TMPTA, 80% w/w NiPAAm, 15% w/w DMAEA, 5% w/w AMO, 4% w/w PI, and 10 seconds per layer, exhibited the desired thermo-responsiveness. To further understand the mechanical properties and thermal dependencies of these scaffolds, we conducted rheological analysis. This analysis helped establish a relationship between the mechanical properties of the scaffolds and their response to temperature changes. To investigate the potential of cell stimulation through periodic changes, we conducted an experiment involving the seeding of L929 fibroblasts and C2C12 myoblasts on thermo-responsive 3D scaffolds. Our objective was to assess the ability of cells to proliferate on scaffolds with different compositions. Specifically, we examined two types of scaffolds: lattice scaffolds, characterized by a porous structure with a periodic network that enables cells to inhabit a 3D environment, and raft scaffolds, which feature a dense 3D structure designed for cells to reside on the surface for observation and evaluation. The lattice scaffolds were composed of ≥2% w/w DMAEA, while the raft scaffolds consisted of ≥5% w/w DMAEA. To evaluate cell proliferation, we conducted direct contact experiments and employed live/dead assays, subjecting the scaffolds to temperature switching conditions at 31℃ and 37℃. These experimental setups aimed to provide insights into the response and behavior of cells in the presence of thermo-responsive scaffolds with varying compositions. The results revealed favorable adhesion and spreading of the cells on the scaffolds. Interestingly, in our dynamic temperature experiment, we observed that myoblasts seeded on the scaffolds exhibited both proliferation and spreading, whereas myoblasts subjected to constant-temperature conditions did not show the same behavior. This suggests that the expansion and contraction of the scaffold, observed in previous experiments, may impact cell viability. Further investigation is needed to better understand this phenomenon. Additionally, we enhanced cell adhesiveness of the scaffolds by impregnating the scaffolds with poly-L-lysine and tested them with hASCs (human adipose-derived stem cells). Significant differences were observed between scaffolds with and without poly-L-lysine, highlighting the effectiveness of this approach. In conclusion, we have successfully developed a thermo-responsive 3D scaffold that exhibits a transition temperature within the physiological range, ensuring cell survival, and provides mechanical stimulation to the cells through the coil-globule effect without causing cell detachment. Among the formulations tested, the GF-printed formulation (3% w/w TMPTA, 80% w/w NiPAAm, 15% w/w DMAEA, 5% w/w AMO, and 4% w/w photo-initiator) with an exposure time of 10 seconds per layer showed the most promising results for cell cultivation under periodic changes in temperature, with a transition temperature of 36.3 °C ± 0.9 °C. Furthermore, we conducted direct cell contact experiments and confirmed the biocompatibility of the thermo-responsive macromer-based scaffolds. These findings demonstrate that this material platform offers a versatile and responsive material for mechanical stimulation of cells on three-dimensional scaffolds. These promising results suggest that this approach holds significant potential for tissue engineering applications and can be utilized to develop mechanical stimulation devices for various biomedical applications.:CHAPTER 1……………………..……………...…………………………..…4 Introduction CHAPTER 2……………………..…………………………..……………….29 Material and Methods CHAPTER 3……………………………………..…..……………………….52 Thermo-Responsive Polymer from Thermal Synthesis Studies CHAPTER 4…………………………………..……………………………...70 An Adjustable Thermo-Responsive Polymer from Photo Synthesis CHAPTER 5……………………………………………………………....….88 Fabrication of Thermo-Responsive Scaffolds from DLP Printing CHAPTER 6…………………...…………………………………………....107 3D Scaffold Biocompatibility Studies CHAPTER 7…………………...……………………………………………139 Discussions CHAPTER 8…………………...……………………………………………161 Summery APPENDIX…………………...………………………………………….…166 Bibliography, List of Publications, CV, Declaration of Authorship, Acknowledgements, Related publication

Page generated in 0.1257 seconds