• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuum and discrete models for particle-based heat exchangers in thermal and thermochemical energy storage

Mishra, Ashreet 10 May 2024 (has links) (PDF)
Thermal energy storage (TES) systems based on renewable energy sources (concentrated solar, wind, and photovoltaic etc.) are crucial to reducing dependence on conventional energy generation systems and reducing renewable energy’s intermittent nature. TES can be utilized in conjunction with concentrated solar power (CSP) in particle-based power cycles where the particles can be charged (heat addition) using solar energy and then discharged (heat extraction) using particle-based heat exchangers (HX). Efficient particle based HXs are vital in coupling heat transfer fluid (HTF) from thermal receivers to power cycle working fluid (WF). Heat transfer enhancement is essential for adopting particle-based moving packed-bed heat exchangers (MPBHXs) in next-generation TES systems, as MPBHXs usually exhibit low particle bed-to-wall heat transfer coefficients and total heat transfer rate. This dissertation focuses on addressing the limitations of MPBHXs by computationally studying the heat transfer performance enhancement due to granular flows in metal foam-based MPBHXs and reactive flow-based MPBHXs. Comprehensive multidimensional, multiscale, and multiphysics models are developed to predict the TES/TCES (Thermochemical energy storage) performance accurately. First, the flow properties through metal foams are determined, followed by granular flow through metal foam-based particle-to-sCO2 HXs to predict the heat transfer enhancement. Then, granular flows with reactive and sensible heat-only particles are studied in particle-to-sCO2 HXs to predict the heat transfer enhancement, followed by the development of discrete element models (DEM) in inclined moving bed granular flows to study particle-scale heat and mass transfer. Overall, this study provides valuable insights into effective modeling of granular flows from continuum to discrete scales and improved design and operation of particle-based heat exchangers and thermochemical reactors.
2

Thermochemical energy storage systems: modelling, analysis and design

Haji Abedin, Ali 01 July 2010 (has links)
Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. Thermochemical TES is an emerging method with the potential for high energy density storage. Where space is limited, therefore, thermochemical TES has the highest potential to achieve the required compact TES. Principles of thermochemical TES are presented and thermochemical TES is critically assessed and compared with other TES types. The integration of TES systems with heating, ventilating and air conditioning (HVAC) applications is examined and reviewed accounting for various factors, and recent advances are discussed. Thermodynamics assessments are presented for general closed and open thermochemical TES systems. Exergy and energy analyses are applied to assess and compare the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Examples using experimental data are presented to illustrate the analyses. Some important factors related to design concepts of thermochemical TES systems are considered and preliminary design conditions for them are investigated. Parametric studies are carried out for the thermochemical storage systems to investigate the effects of selected parameters on the efficiency and behavior of thermochemical storage systems. / UOIT
3

The Use of Ammonium Carbamate as a High Specific Thermal Energy Density Material for Thermal Management of Low Grade Heat

Schmidt, Joel Edward 22 August 2011 (has links)
No description available.
4

Stockage thermochimique de l’énergie solaire concentrée à partir de matériaux innovants par réactions solide-gaz réversibles / Solar thermal energy storage via reversible solid-gas thermochemical reactions

Andre, Laurie 29 November 2017 (has links)
Ce travail de thèse porte sur l’étude et le développement de matériaux adaptés pour la conversion et le stockage thermochimique de l’énergie solaire concentrée à haute température (400-1200°C), en utilisant des réactions solide-gaz réversibles. Ce type de stockage peut être associé aux centrales solaires thermodynamiques pour la génération d’électricité. Une étude bibliographique a permis d’identifier et de sélectionner les matériaux les plus adaptés possédant une densité d’énergie élevée pour le stockage thermochimique, suivant les critères de domaine de température et de non-toxicité requis. Les matériaux sélectionnés sont des oxydes métalliques (de Fe, Mn, Co, Cu), ainsi que des carbonates et des hydroxydes (de Ca, Sr, Ba). Les travaux ont porté ensuite sur les équilibres thermodynamiques des systèmes afin de prévoir les températures de transition et capacités de stockage théoriques. Une étude expérimentale a également été effectuée avec pour objectifs de déterminer précisément les niveaux de température, capacités de stockage en oxygène et enthalpies pour chaque réaction, et de démontrer leur réversibilité complète sur plusieurs cycles successifs. Des oxydes métalliques mixtes (systèmes binaires de Co-Cu, Co-Fe, Mn-Fe, Mn-Co, Mn-Cu) et des pérovskites substituées sur sites A et B ont été développés afin d’optimiser les propriétés redox des matériaux pour le stockage thermochimique. Concernant les carbonates et les hydroxydes de Ca, Sr, Ba, l’addition d’un agent stabilisant (MgO) a permis d’améliorer la stabilité des matériaux et la réversibilité des réactions au cours des cycles. Enfin, un nouveau réacteur thermochimique solaire, permettant la conversion en continu de particules réactives solides, a été validé expérimentalement et optimisé dans le cas de la décomposition de CaCO3 pour le stockage de l’énergie solaire. / This PhD thesis deals with the study and development of suitable materials for thermochemical conversion and storage of concentrated solar energy at high temperature (400-1200°C), by using reversible solid-gas reactions. This type of storage can be associated with solar thermal power plants. A bibliographic survey was performed to identify and select the most promising materials with a high energy storage density for thermochemical storage, based on different required criteria. The selected materials are metal oxides (of Fe, Mn, Co, Cu), carbonates and hydroxides (of Ca, Sr, Ba). The work then focused on the thermodynamic equilibria to determine the theoretical transition temperatures and energy storage capacities of the selected materials. An experimental study was carried out in order to determine the reaction temperatures, oxygen storage capacities and enthalpies for each reaction, and to demonstrate their complete reversibility upon cycling. Mixed metal oxides (binary systems of Mn-Fe, Co-Fe, Co-Cu, Mn-Cu, Mn-Co) and A- and B-site substituted perovskites were developed to optimize their thermochemical energy storage properties. Regarding carbonates and hydroxides of Ca, Sr, Ba, the addition of a stabilizing agent (MgO) allowed improving the materials cycling stability and reactions reversibility during successive cycles. Finally, a novel lab-scale solar reactor was experimentally tested in order to investigate the continuous decomposition of CaCO3 particles for thermochemical solar energy storage application.
5

Towards the numerical modelling of salt / zeolite composites for thermochemical energy storage

Lehmann, Christoph 23 February 2021 (has links)
Komposit-Adsorbentien, die aus einer mit hygroskopischem Salz imprägnierten Zeolithmatrix bestehen, bilden eine vielversprechende Materialklasse für die thermochemische Energiespeicherung (TCES). Sie vereinen die hohe Wärmespeicherdichte des Salzes und die einfache technische Handhabbarkeit des Zeoliths. Dabei verhindert die poröse Matrix das Auslaufen von Salzlösung und kompensiert volumenänderungen während der Ad- und Desorption. Das dynamische Sorptionsverhalten solcher Komposite unterscheidet sich jedoch von dem reiner Zeolithe. Speziell die Adsorptionskinetik ist langsamer, was zu Problemen wie einer geringeren und nicht konstanten thermischen Leistung sowie unvollständiger Adsorption und langen Adsorptionspasen von Energiespeichern auf Basis dieser Materialien führt. Numerische Modellierung hat sich als wichtiges Werkzeug erwiesen, um die Ursachen solcher Leistungseinschränkungen zu identifizieren. Dadurch erleichtert es die Entwicklung von thermochemischen Energiespeichern: Optimale Designs und Arbeitsbedingungen können per Simulation gefunden werden bevor Prototypen gebaut werden müssen. In dieser Arbeit wurde ein numerisches Modell einer Adsorbensschüttung in einer offenen Sorptionskammer entwickelt, in die Open-Sourve Finite-Elemente-Software OpenGeoSys implementiert und mittels experimenteller Daten validiert. Die Modellierungserebnisse zeigen, dass etablierte Sorptionskinetiken das dynamische Adsorptionsverhalten von Salz/Zeolith-Kompositen unter anwendungsrelevanten Arbeitsbedingungen erfassen. Außerdem zeigen sie, dass der Hauptgrund für die Unterschiede zwischen dem Sorptionsverhalten der Komposite und reiner Zeolithe in ihren qualitativ unterschiedlichen Sorptionsgleichgewichten liegt. Ein zweiter Fokus dieser Arbeit liegt darauf zu untersuchen, ob ein begrenzter Umfang an experimentellen Daten genügt, um die entwickelten numerischen Modelle zu kalibrieren. Diese Möglichkeit wurde durch Simulationen von dynamischen Adsorptionsvorgängen an Komposit-Adsorbentien bestätigt. Zudem wurden Kriterien entwickelt, die die Rekonstruktion eines robusten Adsorptionsgleichgewichtsmodells aus einem beschränkten expermientellen Datensatz erlauben. Schließlich wurde im Kontext der Dubinin-Polanyi-Theorie der Adsorption in Mikroporen festgestellt, das die Wahl eines bestimmten Adsorbatdichtemodells nur einen kleinen Einfluss auf Vorhersagen der Leistungsfähigkeit von Adsorbentien für die TCES hat. Die Ergebnisse dieser Arbeit bilden eine fundierte Grundlage für die zukünftige numerische Untersuchung von Materialien, Reaktorgeometrien und Arbeitsbedingungen während der Entwicklung von thermochemischen Energiespeichern, die auf Zeolithen oder Komposit-Adsorbentien basieren.:Used symbols and abbreviations 1. Introduction 2. Foundations 2.1. Thermochemical energy storage 2.2. Zeolites and salt/zeolite composites 2.3. Dubinin-Polanyi theory 2.4. Multiphysical model of a fixed adsorbent bed 2.5. Experimental data 3. Assessment of adsorbate density models 4. Water loading lift and heat storage density prediction 5. Modelling of sorption isotherms based on sparse experimental data 6. Modelling sorption equilibria and kinetics of salt/zeolite composites 7. Summary 7.1. Main achievements 7.2. Conclusions and outlook Bibliography A. Publications A.1. Assessment of adsorbate density models A.2. A comparison of heat storage densities A.3. Water loading lift and heat storage density prediction A.4. Modelling of sorption isotherms based on sparse experimental data A.5. Modelling sorption equilibria and kinetics of salt/zeolite composites / Composite adsorbents consisting of a zeolite host matrix impregnated with a hygroscopic salt are a promising material class for thermochemical energy storage (TCES). They combine the high heat storage density of the salt with the easy technical manageability of the zeolite, which prevents the leakage of salt solution and inhibits volume changes upon ad- and desorption. The dynamic sorption behaviour of such composites, however, is different from the pure host matrix material. Particularly, the adsorption kinetics are slower, which leads to issues such as low and non-steady thermal output power, incomplete adsorption and long adsorption phases of TCES devices using these composite materials. Numerical modelling has proven to be a valuable tool to identify the causes for such performance limitations. Therefore, it facilitates the development of TCES devices: it allows to easily find optimum designs and operating procedures before actual prototypes have to be built. In this thesis a numerical model of a packed adsorbent bed in an open sorption chamber has been developed, implemented in the open-source finite element software OpenGeoSys and validated with experimental data. The modelling results show that established sorption kinetics models capture the dynamic sorption behaviour of salt/zeolite composites under application-relevant operating conditions. Moreover, they show that the main cause for the differences between the composites' and pure zeolite's sorption behaviour lies in their different sorption equilibria. A second focus of the thesis is to investigate the use of limited experimental data for the calibration of the numerical models. This possibility has been confirmed by dynamic sorption simulations of the composite materials. Furthermore, criteria were determined that allow the reconstruction of a robust adsorption equilibrium description from a reduced experimental data set. Finally, in the context of the Dubinin-Polanyi theory of adsorption in micropores, it has been found that the choice of a specific adsorbate density model has only a small influence on performance predictions of adsorbents for TCES. In summary, the results from this thesis will facilitate the screening of materials, reactor geometries and operating conditions via numerical simulations during the design of TCES devices based on zeolites and composite sorbents.:Used symbols and abbreviations 1. Introduction 2. Foundations 2.1. Thermochemical energy storage 2.2. Zeolites and salt/zeolite composites 2.3. Dubinin-Polanyi theory 2.4. Multiphysical model of a fixed adsorbent bed 2.5. Experimental data 3. Assessment of adsorbate density models 4. Water loading lift and heat storage density prediction 5. Modelling of sorption isotherms based on sparse experimental data 6. Modelling sorption equilibria and kinetics of salt/zeolite composites 7. Summary 7.1. Main achievements 7.2. Conclusions and outlook Bibliography A. Publications A.1. Assessment of adsorbate density models A.2. A comparison of heat storage densities A.3. Water loading lift and heat storage density prediction A.4. Modelling of sorption isotherms based on sparse experimental data A.5. Modelling sorption equilibria and kinetics of salt/zeolite composites

Page generated in 0.077 seconds