31 |
Analysis of Stresses in Metal Sheathed Thermocouples in High-Temperature, Hypersonic FlowsPowers, Sean W. 17 April 2020 (has links)
Flow temperature sensing remains important for many hypersonic aerodynamics and propulsion applications. Flight test applications, in particular, demand robust and accurate sensing, making thermocouple sensors attractive. Even for these extremely well-developed sensors, the prediction of stresses (hoop, radial, and axial) within thermocouple sheaths for custom-configured probes remains a topic of great concern for ensuring adequate lifetime of sensors. In contemporary practice, high-fidelity simulations must be run to prove if a new design will work at all, albeit at significant time and expense. Given the time and money it takes to run high-fidelity simulations, rapid optimization of sensor configurations is often impossible, or at a minimum, impractical. The developments presented in this Thesis address the need for hypersonic flow temperature sensor structural predictions which are compatible with rapid design iteration. The derivation and implementation of a new analytical, low-order model to predict stresses (hoop, radial, and axial) within the sheath of a thermocouple are provided. The analytical model is compared to high-fidelity ANSYS mechanical simulations as well as simplified experimental data. The predictions using the newly developed structural low-order model are in excellent agreement with the numerically simulated results and experimental results with an absolute maximum percent error of approximately 4% and 9.5%, respectively, thus validating the model. A MATLAB GUI composed of the combination of a thermal low-order model outlined in additional references [1] through [6] and the new structural low-order model for thermocouples was developed. This code is capable of solving a highly generalized version of the 1-D pin fin equation, allowing for the solution of the temperature distribution in a sensor taking into account conduction, convection, and radiation heat transfer which is not possible with other existing analytical solutions. This temperature distribution is then used in the analytical structural low-order model. This combination allows for the thermal and structural performance of a thermocouple to be found analytically and compared quickly with other designs. / M.S. / Thermocouples are a device for measuring temperature, consisting of two wires of different metals connected at two different points. This configuration produces a temperature-dependent voltage as a result of the thermoelectric effect. Preexisting curves are used to relate the voltage to temperature. Thermocouples are extensively used in high-temperature high-stress environments such as in rockets, jet engines, or any high-corrosive environment. Accurately predicting the stresses within the sheath of a metal-clad thermocouple in extreme conditions is required for many research areas including hypersonic aerodynamics and various propulsion applications. Even for these extremely well-developed and widely used sensors, the accurate prediction of stresses within the metal sheath remains a topic of great concern for ensuring the sensor’s survivability in these extreme conditions. Current engineering practice is to use high-fidelity numerical simulations (Finite Element Analysis) to predict the stresses within the sheath. Perhaps the biggest drawback to this approach is the time it takes to model, mesh, and set-up these simulations. Comparative studies between different designs using numerical simulations are almost impossible due to the time requirement. This Thesis will present an analytically derived quasi-3D solution to find the stresses within the sheath. These equations were implemented into a low-order model that can handle varying temperature, geometry, and material inputs. This model was validated against both high-fidelity numerical simulations (ANSYS Mechanical) and a simplified experiment. The predictions using this newly developed structural low-order model are in excellent agreement with the numerically simulated results and experimental results.
|
32 |
ETUDE ET REALISATION DE MATRICES DE MICROCAPTEURS INFRAROUGES EN TECHNOLOGIE SILICIUM POUR IMAGERIE BASSE RESOLUTIONHaffar, Mehdi 29 November 2007 (has links) (PDF)
La détection de présence humaine est devenu un enjeu important dans de nombreux domaines comme la domotique ou l'automobile, par exemple. Les détecteurs infrarouges grand public, actuellement disponibles sur le marché ne sont pas aptes à faire la distinction entre une personne ou un animal domestique de façon absolument fiable. Pour répondre à ce problème, les matrices imageantes infrarouges classiques sont beaucoup trop onéreuses et trop performantes. C'est pourquoi nous avons choisi de développer des réseaux de microcapteurs de rayonnement infrarouge de quelques pixels avec le souci permanent de minimiser au maximum le coût de fabrication. Ces microcapteurs de type thermoélectrique, sont basés sur une structure originale permettant de les utiliser à l'air libre, sans encapsulation. Un modèle mathématique, prenant en compte les caractéristiques technologiques du microcapteur ainsi que son environnement thermique, a été mis au point et permet de définir la structure optimale à partir d'un cahier des charges. Une étude approfondie a été menée pour chaque étape technologique nécessaire à la réalisation de ces microcapteurs, depuis la membrane compensée en contrainte, jusqu'au dépôt de la couche de polyimide constituant l'absorbant infrarouge. Les résultats obtenus ont montré une bonne corrélation entre le modèle mathématique et les valeurs expérimentales. Des microcapteurs destinés à optimiser la sensibilité à l'éclairement puis la détectivité spécifique ont été étudiés et fabriqués. L'objectif initial de réaliser une matrice imageante infrarouge basse résolution et faible coût a été atteint.
|
33 |
Etude du transfert thermique local et identification des structures d'écoulement lors de la condensation dans un microcanal en silicium.Odaymet, Ahmad 14 December 2010 (has links) (PDF)
L'utilisation des micro-carnaux a l'avantage de contribuer à une augmentation significative de la compacité des échangeurs de chaleur et à une amélioration des performances énergétiques des systèmes. L'étude des régimes d'écoulements diphasiques et des transferts thermiques locaux représentent un véritable verrou scientifique vu son effet sur la durée de vie et les performances énergétiques des systèmes énergétiques tels que les piles à combustible et les refroidisseurs miniatures. Malheureusement, l'aspect hydrodynamique de l'écoulement et du transfert thermique (mesure des densités de flux thermique et des coefficients d'échange thermique locaux) dans un seul micro-canal demeure toujours mal connu. Dans le cadre de ce travail de thèse, nous nous sommes intéressés à étudier les différents phénomènes se produisant lors de la condensation dans un seul micro-canal en repérant les différentes instabilités hydrodynamiques et en analysant les différents mécanismes physiques influençant les coefficients d'échange thermique. A cette fin, nous avons développé un banc d'essais pour tester la condensation en micro-canaux et dans lequel le micro-canal est instrumenté par des micro-thermocouples de 20 µm de diamètre. Cet aspect micro-instrumentation représente une véritable originalité de ce travail de thèse car il permet de mesurer les températures de surface locales tout au long du micro-canal. Une camera rapide est utilisée pour la visualisation des structures des écoulements se produisant en condensation dans le micro-canal. Une procédure de traitement d'images est développée pour caractériser les différents paramètres de l'écoulement diphasique dans le micro-canal, à savoir : taille des bulles, parcours des bulles, forme du ménisque, vitesse et fréquence des bulles, etc. L'influence de ces paramètres sur les structures des écoulements et sur l'intensification des transferts est étudiée. On montre que la présence des écoulements instationnaires et cycliques qui changent de structure durant chaque période. La variation de la température pour chaque période est reliée à la structure de l'écoulement en condensation dans le micro-canal. On a aussi identifié des écoulements développés de différentes structures. Nous avons aussi mis en évidence que la densité du flux thermique local dépend non seulement du flux massique et du taux de condensation mais également de la structure de l'écoulement en condensation. Enfin, nos résultats donnent une démonstration sur l'influence de la micro-structuration de surface sur la structure d'écoulement lors de la condensation dans un micro-canal, et fournissent de nouvelles méthodes pour l'amélioration de l'intensification thermique.
|
34 |
Avaliacao da temperatura na camara pulpar durante preparo classe V com laser de erbio:YAGPICININI, LEONARDO S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:46:37Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:34Z (GMT). No. of bitstreams: 1
08352.pdf: 3349850 bytes, checksum: 8bcc73d5ede4b0438ca9f74691cebab8 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Intituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
35 |
Avaliacao da variacao da temperatura na camara pulpar apos a irradiacao de diodo laser de alta potencia de 830 nanometros em esmalte dental: estudo in vitroMACRI, RODRIGO T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:46:13Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:46Z (GMT). No. of bitstreams: 1
07975.pdf: 2244655 bytes, checksum: 2e4b7faae1bc5fa7a9010151c489c1ee (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
36 |
Avaliacao da temperatura na camara pulpar durante preparo classe V com laser de erbio:YAGPICININI, LEONARDO S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:46:37Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:34Z (GMT). No. of bitstreams: 1
08352.pdf: 3349850 bytes, checksum: 8bcc73d5ede4b0438ca9f74691cebab8 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Intituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
37 |
Avaliacao da variacao da temperatura na camara pulpar apos a irradiacao de diodo laser de alta potencia de 830 nanometros em esmalte dental: estudo in vitroMACRI, RODRIGO T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:46:13Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:46Z (GMT). No. of bitstreams: 1
07975.pdf: 2244655 bytes, checksum: 2e4b7faae1bc5fa7a9010151c489c1ee (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP; Faculdade de Odontologia, Universidade de Sao Paulo
|
38 |
Fundamental Study Of Fc-72 Pool Boiling Surface Temperature Fluctuations And Bubble BehaviorGriffin, Alison 01 January 2008 (has links)
A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 microns wide and overlapped to form a 25 micron by 25 micron junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1-2 C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of a bubble growing over the TFTC junction on both the sapphire and fused silica heater surfaces. When the fused silica heater produced a temperature drop of 1.4 C, the sapphire heater produced a drop of only 0.04 C under the same conditions. These results verified that the lack of temperature drops present in the sapphire data was due to the thermal properties of the sapphire layer. By observing the bubble departure frequency and site density on the heater, as well as the bubble departure diameter, the contribution of nucleate boiling to the overall heat removal from the surface could be calculated. These results showed that bubble vapor generation contributed to approximately 10% at 1 W/cm^2, 23% at 1.75 W/cm^2, and 35% at 2.9 W/cm^2 of the heat removed from a fused silica heater. Bubble growth and contact ring growth were observed and measured from images obtained with the high-speed camera. Bubble data recorded on a fused silica heater at 3 W/cm^2, 4 W/cm^2, and 5 W/cm^2 showed that bubble departure diameter and lifetime were negligibly affected by the increase in heat flux. Bubble and contact ring growth rates demonstrated significant differences when compared on the fused silica and sapphire heaters at 3 W/cm^2. The bubble departure diameters were smaller, the bubble lifetimes were longer, and the bubble departure frequency was larger on the sapphire heater, while microlayer evaporation was faster on the fused silica heater. Additional considerations revealed that these differences may be due to surface conditions as well as differing thermal properties. Nucleate boiling curves were recorded on the fused silica and sapphire heaters by adjusting the heat flux input and monitoring the local surface temperature with the TFTCs. The resulting curves showed a temperature drop at the onset of nucleate boiling due to the increase in heat transfer coefficient associated with bubble nucleation. One of the TFTC locations on the sapphire heater frequently experienced a second temperature drop at a higher heat flux. When the heat flux was started from 1 W/cm^2 instead of zero or returned to zero only momentarily, the temperature overshoot did not occur. In these cases sufficient vapor remained in the cavities to initiate boiling at a lower superheat.
|
39 |
Characterization of Aluminum 3003 Ultrasonic Additive ManufacturingSchick, David E. January 2009 (has links)
No description available.
|
40 |
Desenvolvimento de um sistema de termometria por ultrassom para monitoramento de temperaturaAndrade, Patrícia Cardoso de 05 May 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-06-23T17:02:47Z
No. of bitstreams: 2
Dissertação - Patrícia Cardoso de Andrade - 2017.pdf: 2778221 bytes, checksum: 777088966ede58904a5d760acc52b11e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2017-06-29T18:28:28Z (GMT) No. of bitstreams: 2
Dissertação - Patrícia Cardoso de Andrade - 2017.pdf: 2778221 bytes, checksum: 777088966ede58904a5d760acc52b11e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-29T18:28:28Z (GMT). No. of bitstreams: 2
Dissertação - Patrícia Cardoso de Andrade - 2017.pdf: 2778221 bytes, checksum: 777088966ede58904a5d760acc52b11e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-05-05 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Measuring internal temperature and/or temperature gradient in materials is of fundamental interest
in both engineering and basic sciences because the temperature is closely related to the properties
of the material. The purpose of this study was to develop an ultrasound thermometry system for
internal temperature gradient monitoring of materials subjected to a heat source. A low cost
oscilloscope was used as a system for the acquisition of ultrasonic signals. Jointly, was developed a
computational algorithm responsible for estimating the internal temperature distribution of
materials. For this purpose was used a low cost oscilloscope as a system for the acquisition of
ultrasonic signals. Measurements were taken during the heating and cooling regimen of an
aluminum block. A thermocouple temperature measurement system was used to verify and validate
the temperature distribution obtained by the ultrasound thermometry method. The development of
the computational algorithm responsible for communication and data collection provided real-time
temperature measurements. The comparison of the temperature measurements derived from both
methods showed agreement greater than 96%, with differences lower than 0.70°C. The
methodology presented was relevant within the laboratory context to estimate the internal
temperature of heated materials. / Medir temperatura interna e/ou gradiente de temperatura em materiais é de fundamental
interesse, tanto nas engenharias quanto nas ciências básicas, pois a temperatura está
intimamente relacionada com as propriedades do material. O objetivo desse estudo foi
desenvolver um sistema de termometria por ultrassom para monitoramento interno de
gradiente de temperatura em materiais submetidos a fonte de calor. Conjuntamente, foi
desenvolvido um algoritmo computacional responsável em estimar a distribuição de
temperatura interna dos materiais. Para essa finalidade foi empregando um osciloscópio de baixo custo como sistema de aquisição de sinais ultrassônicos. Medições foram realizadas
durante o regime de aquecimento e resfriamento de um bloco de alumínio. Um sistema de
medição de temperatura por termopares foi utilizado para verificar e validar a distribuição de
temperatura obtida pelo método de termometria por ultrassom. O desenvolvimento do
algoritmo computacional responsável pela comunicação e coleta de dados propiciou medições
de temperatura em tempo real. A comparação das medições de temperatura derivada de
ambos os métodos apresentou concordância maior que 96%, com diferenças inferiores a
0,70°C. Portanto, conclui-se que a metodologia apresentada mostrou-se relevante dentro do
contexto laboratorial para estimativa de temperatura interna de materiais aquecidos.
|
Page generated in 0.06 seconds