• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 43
  • 17
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Density stratification and associated front in Liverpool bay

Czitrom Baus, S. P. R. January 1982 (has links)
No description available.
12

Stability of the climate system and extreme climates in model experiments

Romanova, Vanya. Unknown Date (has links) (PDF)
University, Diss., 2004--Bremen.
13

North Atlantic deep water and antarctic bottom water their interaction and influence on modes of the global ocean circulation /

Brix, Holger. Unknown Date (has links) (PDF)
University, Diss., 2001--Bremen.
14

Variability and processes of the Denmark Strait overflow

Macrander, Andreas. Unknown Date (has links) (PDF)
University, Diss., 2004--Kiel.
15

Some aspects of the Atlantic ocean circulation

Mohammad, Rezwan January 2005 (has links)
<p>The present thesis deals with the ocean circulation from two viewpoints: <i>Pro primo</i>, the dependence of the global thermohaline ocean circulation (THC) on the parameterization of the small-scale vertical mixing processes in the interior of the ocean, and, <i>pro secundo</i>, the dynamics of the circulation in the Nordic Seas. The THC is found be crucially dependent on the parameterization of the small-scale vertical mixing, two types of which have been compared: The commonly used constant diffusivity and a, physically more plausible, stability-dependent parameterization. For constant diffusivity the circulation weakens when the equator-to-pole surface density difference is decreased, consonant with commonly held prejudices. However, for stability-dependent diffusivity the circulation is enhanced. This conclusion has been reached using two investigative techniques, viz. a scale analysis as well as a numerical zonally-averaged and equatorially symmetric THC model. However, if asymmetric flows are considered, the dynamics become more complex to interpret. It has, nevertheless, been concluded that when the degree of asymmetry of the surface-density distribution is taken to be fixed, the response of the circulation to changes of the surface-density distribution corresponds to that from the symmetric investigation.</p><p>The studies of the Nordic Seas are mainly based on satellite-altimetric data providing Sea-Level Anomalies (SLAs). These are utilized to estimate the seasonal cycle as well as the inter-annual variability of the depth-integrated flows. The seasonal cycle is examined using the winter-to-summer difference of the barotropic flow, with focus on the entire region as well as on two sections extending from a common point in the central Norwegian Sea to Svinøy on the Norwegian coast and to the Faroe Islands, respectively. The total barotropic transport is estimated to be around 10 Sv larger during winter than in summer, of which 8 Sv are associated with the barotropic re-circulation gyre in the interior of the Norwegian Sea, the remainder being linked to the Atlantic inflow across the Iceland-Scotland Ridge. The inter-annual variability of the circulation in the Nordic Seas is investigated on the basis of a theoretical analysis permitting independent calculation of the barotropic flow along closed isobaths using SLA data as well as wind data. The barotropic flow based on SLA data is found to co-vary with the flow estimated using wind data.</p>
16

Some aspects of the Atlantic ocean circulation

Mohammad, Rezwan January 2005 (has links)
The present thesis deals with the ocean circulation from two viewpoints: Pro primo, the dependence of the global thermohaline ocean circulation (THC) on the parameterization of the small-scale vertical mixing processes in the interior of the ocean, and, pro secundo, the dynamics of the circulation in the Nordic Seas. The THC is found be crucially dependent on the parameterization of the small-scale vertical mixing, two types of which have been compared: The commonly used constant diffusivity and a, physically more plausible, stability-dependent parameterization. For constant diffusivity the circulation weakens when the equator-to-pole surface density difference is decreased, consonant with commonly held prejudices. However, for stability-dependent diffusivity the circulation is enhanced. This conclusion has been reached using two investigative techniques, viz. a scale analysis as well as a numerical zonally-averaged and equatorially symmetric THC model. However, if asymmetric flows are considered, the dynamics become more complex to interpret. It has, nevertheless, been concluded that when the degree of asymmetry of the surface-density distribution is taken to be fixed, the response of the circulation to changes of the surface-density distribution corresponds to that from the symmetric investigation. The studies of the Nordic Seas are mainly based on satellite-altimetric data providing Sea-Level Anomalies (SLAs). These are utilized to estimate the seasonal cycle as well as the inter-annual variability of the depth-integrated flows. The seasonal cycle is examined using the winter-to-summer difference of the barotropic flow, with focus on the entire region as well as on two sections extending from a common point in the central Norwegian Sea to Svinøy on the Norwegian coast and to the Faroe Islands, respectively. The total barotropic transport is estimated to be around 10 Sv larger during winter than in summer, of which 8 Sv are associated with the barotropic re-circulation gyre in the interior of the Norwegian Sea, the remainder being linked to the Atlantic inflow across the Iceland-Scotland Ridge. The inter-annual variability of the circulation in the Nordic Seas is investigated on the basis of a theoretical analysis permitting independent calculation of the barotropic flow along closed isobaths using SLA data as well as wind data. The barotropic flow based on SLA data is found to co-vary with the flow estimated using wind data.
17

Combined effects of global warming and a shutdown of the Atlantic meridional overturning circulation on West African and European climate

Brown, Meredith Guenevere Longshore 20 July 2012 (has links)
The Atlantic meridional overturning circulation has a vast potential for abrupt climate change due to its large heat transport through the ocean and its nonlinear dynamics. Because of these unique properties, this paper investigates how the climate of West Africa and Europe will respond to a shutdown of the Atlantic meridional overturning circulation at the end of the 21st century. Here we use a regional climate model with 90-km grid spacing is forced by an idealized sea-surface temperature anomaly, based upon coupled atmosphere/ocean global model water hosing experiments, with a business-as-usual global warming scenario to discover how West African and European climate will change. In both the boreal spring and summer, cooling in the eastern Atlantic is associated with a strong intensification and eastward extension of the North Atlantic subtropical high over Europe throughout the depth of the atmosphere, a strengthening of the heat low over West Africa at low levels, and a weakening of the Saharan High in the upper atmosphere. Rainfall rates also decrease markedly throughout most of West Africa and Europe: in spring, rainfall rates decrease by 50-80% over Sahelian Africa, in summer rainfall over Europe decreases by up to 90%, while precipitation over West Africa is reduced by 40%. / text
18

The North Atlantic Ocean in the greenhouse overturning response and sensitivities /

Schweckendiek, Ulf. Unknown Date (has links) (PDF)
University, Diss., 2003--Kiel.
19

The role of eddies for the deep water formation in the Labrador Sea

Czeschel, Lars. Unknown Date (has links) (PDF)
University, Diss., 2005--Kiel.
20

Experimentelle Untersuchungen von Fingerströmung und thermohalinen Treppen für instabile Auftriebsverhältnisse / Experimental study of finger convection and thermohaline staircases with destabilizing density gradient

Kellner, Matthias 13 April 2016 (has links)
Doppelt diffusive Konvektion im Fingerregime wurde mittels einer elektrochemischen Zelle untersucht. Kupferionen bilden die destabilisierende und Temperatur die stabilisierende Komponente. In diesen System existieren Finger und thermohaline Treppen, obwohl die Gesamtdichtestratifizierung instabil ist. Fingerströmung wird durch Konvektionsrollen ersetzt, wenn die Konvektion schnell genug ist um Temperaturdiffusion zwischen den Fingern zu unterbinden, bzw. wenn die thermische Auftriebskraft 1/30 der chemischen Auftriebskraft beträgt. Am Übergang ist der Ionentransport größer, als ohne stabilisierenden Temperaturgradienten.

Page generated in 0.0827 seconds