• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 64
  • 19
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 288
  • 92
  • 88
  • 63
  • 50
  • 48
  • 37
  • 35
  • 34
  • 28
  • 25
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Phosphorescence : mécanismes et nouveaux matériaux

Clabau, Frédéric 18 March 2005 (has links) (PDF)
La phosphorescence est une émission lumineuse perdurant après l'arrêt de l'excitation, due à un piégeage par des défauts de la matrice des porteurs de charges formés durant l'excitation, puis à leur dépiégeage progressif avec l'énergie thermique à température ambiante, suivi de leur recombinaison radiative. Le premier objectif de la thèse était la compréhension des mécanismes de phosphorescence, jusqu'alors inconnus. La phosphorescence du matériau le plus ancien, ZnS:Cu+,Co2+, est due au piégeage d'électrons sur des lacunes de soufre distantes de l'activateur Cu+. La luminescence est associée à la recombinaison radiative depuis la bande de conduction (bleu) ou une lacune anionique plus ou moins proche de Cu+ (vert, rouge) vers les orbitales 3d de Cu+. La phosphorescence du matériau le plus performant, SrAl2O4:Eu2+,Dy3+,B3+, est due au piégeage d'électrons sur des lacunes d'oxygène proches de l'activateur Eu2+. La seconde émission observable à basse température est due à un transfert de charge entre les ions Eu3+ résiduels et O2-, et est associée à un piégeage de trous. Des règles générales sont dégagées pour le piégeage dans tous les matériaux phosphorescents : lacunes anioniques proches des activateurs pour Eu2+, Ce3+, Tb3+ et Pr3+, lacunes anioniques éloignées des activateurs pour Cu+ et Mn2+, lacunes cationiques pour les activateurs Eu3+, Tm3+ et Sm3+. Un nouveau modèle est établi sur l'agglomération et la stabilisation des défauts quel que soit le défaut de charge qu'ils induisent, avec des comparaisons d'énergies d'ionisation. Ce modèle permet une approche prédictive de la synthèse de nouveaux matériaux phosphorescents, ainsi qu'une approche raisonnée de l'optimisation de la fluorescence de certains luminophores. Le second objectif de la thèse était la découverte de nouveaux matériaux phosphorescents. Plusieurs matrices dopées par Eu2+ ont été trouvées phosphorescentes, parmi lesquelles principalement (Ca,Sr)Al2Si2O8:Eu2+,Pr3+ (brevetée par Rhodia Electronics and Catalysis et le CNRS), émettant pendant quelques heures avec une nouvelle couleur bleu très clair.
172

Risk from radionuclides: a frog's perspective : Accumulation of 137Cs in a riparian wetland, radiation doses, and effects on frogs and toads after low-dose rate exposure

Stark, Karolina January 2006 (has links)
Threats from man-made radionuclides include waste issues, increasing number of power plants, underground bomb testing, nuclear weapons, and “dirty bombs”. Until recently the ionizing radiation protection system focused on protecting humans with an implied protection of biota. However, goals of sustainable development and precautionary principles for human activity are leading to an inclusion of plant and animal populations in the protection system. From this perspective, the present thesis examines wetlands that function as sinks for the radionuclide 137Cs, and describes calculated and measured radiation doses to residing biota. Also, multi-level effects from exposure to low-dose rate ionizing radiation were studied. Accumulation of 137Cs after the Chernobyl accident fallout was studied in a riparian wetland with a mean activity concentration of 1 200 kBq m-2 in Sweden (paper I). A mass balance budget of 137Cs showed that the sedimentation of new material was balanced by the decay process of 137Cs in parts of the wetland (paper I). Frogs were identified as organisms of concern in this wetland. Internal radiation doses, based on whole body measurements of frogs, were estimated to be lower than external doses based on soil samples (paper II). Current dose models for biota resulted in a wide range of doses depending on different levels of conservatism in the models. Therefore, in situ measurements with frog-phantoms were found to provide valuable dose information (paper III). Measured doses using frog-phantoms were lower than calculated doses using several dose models. Although a dose conversion factor by FASSET was found to be useful for comparison with measurements in the field. A higher dose was measured to the phantom surface in comparison to inner parts, i.e. the sensitive skin of frogs receives the highest dose. Estimated and measured radiation doses to frogs were below suggested dose rate limits. Low-dose rate 137Cs exposure of eggs and tadpoles from three amphibian species, Scaphiopus holbrookii, Bufo terrestris, and Rana catesbeiana, showed no increased levels of strand breaks in red blood cells, and no effects on development, survival or growth up to metamorphosis (paper IV). The ecological factor larval density had a stronger effect on metamorphic traits than low-dose rate radiation. Higher levels of strand breaks were detected after an acute dose in R. catesbeiana than after a chronic dose supporting a dose rate limit for protection of amphibians rather than a dose limit (paper IV). Based on current knowledge, frogs in the contaminated wetland are probably not exposed to radiation doses from 137Cs that are harmful for the population. However, variations in sensitivity between populations and species, and adaptive responses have been shown for amphibians exposed to other stressors. This supports further research on effects of chronic low-dose rates of ionizing radiation on amphibians.
173

Influence conjuguée du broyage et du dopage sur certaines propriétés physiques d'alumine monocristalline

Daviller, Daniel 29 October 1990 (has links) (PDF)
Pour cette recherche, nous avons sélectionné plusieurs techniques qui permettent de suivre l'influence des ions Cr<sup>3+</sup> en solution solide dans l'alumine alpha. La fluorescence optique s'avère être une technique de choix. Elle met en évidence des interactions entre plusieurs activateurs Cr<sup>3+</sup> rapprochés. Leurs augmentations provoquées par des réarrangements différents permet d'interpréter la fissuration de certains rubis fortement dopes. L'influence du broyage sur l'intensité des signaux de triboémission est interprétée par la présence de deux phénomènes antagonistes. Cette approche permet de considérer la triboémission comme une émission exoeléctronique thermostimulée (E.E.T.S.), stimulée par broyage.
174

Synthesis And Characterization Of Lithium Tetraborate Doped With Metals

Pekpak, Esin 01 March 2009 (has links) (PDF)
Lithium tetraborate (Li2B4O7) has aroused interest of scientists since 1960s by the courtesy of the thermoluminescence (TL) property it possesses. Over and above, it found widespread use in surface acoustic wave apparatuses, in sensor sector and in laser technology due to its non linear optical characteristics. For the uses in thermoluminescence dosimetry lithium tetraborate is activated by addition of a variety of metals as dopants. This study comprises the synthesis of lithium tetraborate by two methods (high temperature solid state synthesis and water/solution assisted synthesis) as well as doping and characterization of the material. Lithium tetraborate is readily commercially available in TL dosimetry / hence, the main aim is to specify practical production conditions to pioneer domestic production. In high temperature synthesis, the initial heating was performed at 400oC for 3 hours. Then the samples were heated at 750oC for two hours, intermittently mixed to enhance diffusion and exposed to the same temperature for another two hours. In water/solution assisted synthesis, stoichiometric quantities of reactants were mixed in water by heating and agitating in order to achieve homogenous mixing and good dispersion of the material. The remnant of water was removed from the system by 3 hours initial heating at 150oC. The synthesis stage is followed by doping step where the metals Cu, Ag and In in different proportions were doped in lithium tetraborate by solid state and solution assisted synthesis techniques. Powder X-ray diffraction method was employed for the characterization of the material. The thermal properties of doped and un-doped materials were studied by DTA (Differential Thermal Analyses). Besides, FT-IR (Fourier Transform Infra red) spectrometry analyses were performed in order to detect differences in the bond structure caused by doping The XRD patterns obtained showed that lithium tetraborate production was successful by both high temperature solid state synthesis and solution assisted synthesis Moreover, it was inferred from the XRD results that addition of dopants did not have a sound effect on the crystal structure. Furthermore, the DTA results displayed that addition of different dopants to the structure of lithium tetraborate did not cause any noticeable difference. The extensive TL measurements showed that the TL response of the material produced is affected by production and doping methods.
175

Effects Of Synthesis And Doping Methods On Thermoluminescence Glow Curves Of Manganese Doped Lithium Tetraborate

Kayhan, Mehmet 01 June 2009 (has links) (PDF)
In this study, differences in glow curves of Mn doped LTB powder samples synthesized with solid and wet synthesis methods and doped by using solid and wet doping techniques were investigated. Firstly, LTB was synthesized by using wet synthesis method which mainly comprises dissolution of reactants in water as solvent. Second way to produce LTB which was used in this study was solid synthesis method. In solid synthesis method, reactants were mixed in powder form. In the second part of the study, LTB produced by two different methods were doped with Mn and additionally Ag, Mg or P by using two different doping techniques. In order to see structural differences between differently synthesized and differently doped LTB samples which contained different amount of dopant powder X-Ray Diffraction (XRD) method was employed. Besides, FTIR (Fourier Transform Infrared) spectroscopy analyses were performed in order to detect differences in the bond structure caused by doping. Additionally, Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) was used to determine the actual amount of dopant in LTB. Also morphological structures of samples were compared by using Scanning Electron Microscopy (SEM). Thermoluminescence measurements were performed with (TLD) Thermoluminescence Dosimeter equipment. XRD and FTIR analysis showed that syntheses of products were done in well success. Addition of dopants did not cause any changes in structural or bonding properties of LTB. It was possible to observe that, synthesis and doping methods and dopant concentration effect the thermoluminescence glow curves of doped LTB.
176

Synthesis, Characterization And Investigation Of Thermoluinescence Properties Of Strontium Pyrophosphate Doped With Metals

Ilkay, Levent Sait 01 September 2009 (has links) (PDF)
Strontium pyrophosphate is a promising phosphate that is used widely in the industry as a result of its luminescent, fluorescent, dielectric, semi-conductor, catalyst, magnetic and ion exchange properties. Thermoluminescent dosimetry (TLD) is one of such areas. Recent researches in METU on thermoluminescence property of strontium pyrophosphate showed that strontium pyrophosphate could give enough intensity for radiation dosimetry when doped with oxides of some rare-earth elements. In this study strontium pyrophosphate was synthesized and the product was doped with copper-silver, copper-indium and manganese-praseodymium ions by solid-state reaction. In addition to these processes, characterization and the investigation of thermoluminescence properties of strontium pyrophosphate with and without dopants was conducted. Stoichiometric quantities of strontium carbonate and ammonium dihydrogen phosphate were weighed, mixed and ground by agate mortar. Afterwards, the mixture was heated at 900&amp / #730 / C for 14.5 hours. For doping process, synthesized strontium pyrophosphate and different amounts of copper oxide, indium oxide, silver nitrate, manganese oxide and praseodymium oxide were weighed and powdered together. Then, mixture was heated at 950&amp / #730 / C for 11 hours. For characterization of strontium pyrophosphate samples with and without dopants / X-ray Diffraction (XRD) was implemented. Fourier Transform Infrared Spectroscopy (FTIR) was used to determine whether the bond structures were affected from doping or not. Thermal properties of the samples were investigated with the help of Differential Thermal Analysis (DTA). Morphology of compounds was observed by Scanning Electron Microscope (SEM). Afterwards thermoluminescence (TLD) studies were carried out. XRD pattern of samples showed that the intensity of hkl-310 peak of strontium pyrophosphate increased with the inclusion of metal oxides, however none of the characteristic peaks of metal oxides was observed. Addition of metal oxides caused no change in FTIR meaning that the anionic part of matrix compound, which is strontium pyrophosphate, has structural stability. Thermal analysis and morphological investigation of this material were performed. TLD results were different for each sample, which has different content. The most significant peak, which is suitable for radiation dosimetry was observed at 160&amp / #730 / C in the glow curve with the sample doped with 7% manganese oxide and 1% praseodymium oxide.
177

Synthesis And Characterization Of Novel Rare Earth Phosphates And Rietveld Structural Analysis Of Rare Earth Orthoborates

Seyyidoglu, Semih 01 October 2010 (has links) (PDF)
This thesis covers the synthesis and the characterization of sodium lanthanide oxide phosphates, rare earth added strontium pyrophosphates and the Rietveld structural analysis of rare earth orthoborates. Solid state and microwave-assisted synthesis method was employed for the synthesis of desired materials. The formation of the produced phases was confirmed by X-ray Diffraction (XRD), Infrared FT-IR, Raman, Scanning Electron Microscopy (SEM) methods. By using Rietveld Refinement method, structural analysis of rare earth orthoborates were done and three dimensional crystal structures were found. In the first part of the thesis, some new sodium lanthanide oxide phosphates were synthesized by solid state reaction method from Ln2O3 (where Ln= La, Nd, Sm, Gd, Dy, Ho, Er, Yb), Na2CO3, NH4H2PO4 at 1100 oC. Na2LaOPO4, Na2NdOPO4, and Na2SmOPO4 produced with the space group is Pmm2. With the help of the same procedure new orthorhombic Na2DyOPO4, Na2HoOPO4, Na2ErOPO4, and Na2YbOPO4 were synthesized for the first time in the literature at 1100 oC with the same space group Pmm2. v In the second part of the thesis, Sr2P2O7 - ZrP2O7 solid solution was obtained by the solid state reaction and they were characterized for the first time in literature and subjected to thermoluminescence measurements showing Sr2P2O7 has glow curve around 100 oC. Then CuO and some rare earth oxides (Y2O3, La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3) 0.5-15% (by weight) were added to pure Sr2P2O7. After structural determinations by XRD, thermoluminescence studies showed two glow peaks of Pr, Ho, and Nd along with Cu-added samples, one of them is always at around 90 oC and the other TLthermoluminescence- peak around 180, 275, and 285 oC, respectively. This study showed that rare earth added Sr2P2O7 materials can be promising material for dosimetric applications. In the third part of this work, time saving microwave-assisted synthesis method was applied to produce pure LnBO3 (Ln=La, Nd, Dy, Ho) by using urea and sucrose as a microwave active organic additive. For LaBO3 and NdBO3, space group found as Pnma and for DyBO3 and HoBO3 powders crystallized in hexagonal unit cell with P-6c2 space group. All microwave-assisted products have particle sizes lower than 1 micrometer. In the final part of this study, pure LnBO3 (Ln=Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu) powder samples were produced by using solid state reactions of Ln2O3 and H3BO3 (ratio=1:2) heated at 900 oC for 10 hours and 1000 oC for 5 hours. The crystallographic studies conducted with rietveld structural refinement and unit cell parameters, background functions, profile parameters, zero shift, atomic positions, and unisotropic thermal parameters were refined. LaBO3 and NdBO3 were solved based on Pnma orthorhombic structure while the crystal structure of YBO3, DyBO3 and HoBO3 were monoclinic C2/c. SmBO3 showed triclinic P-1 structure.
178

Design And Implementation Of A Luminescence Emission Spectrometer

Togay, Evren 01 March 2012 (has links) (PDF)
Luminescence is the emission of light resulting from radiative transition of an atom from an excited state to a ground state. This radiative transition yields emission of photons and the luminescence is the general name which is used to classify &ldquo / cold emission&rdquo / other than the blackbody radiation. Spectroscopy involves the measurement of intensity of emitted, absorbed or scattered electromagnetic radiation as a function of wavelength. Thus, it is a valuable tool in the study of understanding the luminescence production mechanisms. Measurement of emission spectra gives information about the energy levels of transition and structure, geometry and composition of the sample. In this study, a versatile luminescence emission spectrometer was designed and developed with the main aim of measuring Photoluminescence (PL), Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) emission spectra of materials relevant for dosimetry. The spectrometer was constructed around a Littrow type monochromator by developing the necessary hardware, firmware and software. Wavelength calibration, measurement of spectral response and determination of resolution of the spectrometer were done using calibration lamps and a calibrated spectroradiometer. Finally the performance of the constructed spectrometer was tested by measuring the emission spectra of materials such as BeO, Al2O3 and CaF2 wherever possible the measured spectra were compared with the ones reported in the literature.
179

Datation par luminescence : recherches méthodologiques et applications au volcanisme dans l'environnement de Laschamp

Bassinet, C. 23 March 2007 (has links) (PDF)
L'objectif de ce travail était de dater des coulées volcaniques de la Chaîne des Puys (Massif Central, France) situées chronologiquement dans la période de l'événement paléomagnétique de Laschamp (30-50 ka). Les méthodes utilisées étaient la thermoluminescence et la luminescence stimulée optiquement appliquées à des grains de quartz et à des galets quartzeux extraits de sédiments cuits par ces coulées. Ces minéraux émettent des signaux de luminescence dont le comportement est souvent irrégulier. Leur paléodose a donc été déterminée par différentes méthodes pour choisir celles qui seraient les plus appropriées à l'obtention de résultats fiables. Ces intercomparaisons ont mis en évidence une dispersion des résultats supérieure à ce qui pouvait être attendu au regard des incertitudes habituellement associées à chacune d'entre elles. Dans la plupart des cas, ces observations ont conduit à proposer un intervalle assez large dans lequel est compris l'âge probable de l'échantillon.
180

Determination of dose distribution of Ruthenium-106 Ophthalmic applicators /

Takam, Rungdham. January 2003 (has links) (PDF)
Thesis (M.Sc.)--University of Adelaide, Dept. of Physics and Mathematical Physics, 2003. / "August 2003" Bibliography: leaves 108-117.

Page generated in 0.1292 seconds