41 |
Characterisation of Sulfolobus solfataricus Ard1, a promiscuous N-acetyltransferase /Mackay, Dale Tara. January 2008 (has links)
Thesis (Ph.D.) - University of St Andrews, March 2008.
|
42 |
Synthesis and characterization of phosphono-CheY from Thermotoga maritima /Haas, R. Matthew January 2007 (has links)
Thesis (M.S.)--University of North Carolina Wilmington, 2007. / Includes bibliographical references (leaves: 190-193)
|
43 |
Biodegradation of polyurethane under composting conditionsZafar, Urooj January 2013 (has links)
Plastic are a highly durable, lightweight and low cost family of polymeric materials that form an essential and integral component of today’s world. Their continued world-wide large scale manufacture has led them to be a major component of man-made waste. A large proportion of plastic waste is directed to the landfill sites, however their low degradation rates, scarcity of landfill sites and growing water and land pollution problems require alternatives to be developed. Composting is a natural process involving aerobic decomposition of organic wastes by a mixed microbial consortium that involves thermophilic microbes during the process due to the heat generated during decomposition. In this study we investigated the biodegradation of polyurethane under composting conditions. Polyurethanes are heteropolymers with a wide range of applications in the medical, automotive, construction and domestic field and in Europe account for 7% of all plastic manufacture and have been shown to be susceptible to biodegradation, particularly by fungi. In this thesis, it was found that loss in tensile strength of >70% occurs at both mesophilic (25°C) and thermophilic (45° and 50°C) temperatures under laboratory conditions and so is susceptible to degradation at all stages of the composting process. Moreover, polyester PU buried in compost piles at a commercial composting site during the maturation phase of an in silo composting process also underwent substantial degradation. Non-culture based analysis by TRFLP, DGGE and 454 pyrosequencing revealed that the fungal communities colonising the surface of PU was substantially different from the surrounding compost indicating selection of fungi on the PU surface. Pyrosequencing revealed that under laboratory conditions, at 25°C Fusarium solani, and 45°C and 50°C, Candida ethanolica was the dominant organism recovered from the PU surface, whereas at the commercial composting site an unidentified fungal clone and Arthrographis kalrae were the dominant organisms recovered. When the microparticulate polyester PU dispersion impranil was added to compost, a substantial shift in the indigenous fungal population was observed along with an increase in fungal viable numbers, however, addition of larger solid PU had no lasting effect on the surrounding compost community. This study demonstrates that polyester PU is highly susceptible to degradation in during composting and indicates a future potential for directing PU wastes to existing commercial composting processes.
|
44 |
Studium biodegradace syrovátky termofilními bakteriemi / Study of Whey Biodegradation by thermophilic BacteriaFischerová, Lenka January 2008 (has links)
This thesis deals with the possibilities of biodegradation of whey by the means of a mixed thermophilic aerobic bacterial culture of the Bacillus and Thermus genera. After protein had been removed, the whey was used as a medium for cultivation of the thermophilic microorganisms. The cultivations took their course in a fermentation unit and in the Erlenmayer flasks in a heated shaker in a whey medium. The bioengineering characteristics of the cultivation processes and the degree of biodegradation of the whey were evaluated. Scale of the whey biodegration was judged through the analytical characteristics – concentration of biomass, laktose and a chemical oxygen demand (COD). A decrease of CHSK was detected in all cultivations. Maximal reduction of CHSK was happend always in c. first half of each exponential phase growt, i.e. about 15 ± 3 % after first growth phase and sumarily about 62 ± 4 % after second growth phase.
|
45 |
The Effect of Steady-State Digestion Temperature on the Performance, Stability, and Biosolids Odor Production associated with Thermophilic Anaerobic DigestionWilson, Christopher Allen 13 December 2006 (has links)
The performance and stability of a thermophilic anaerobic digestion system are inherently dependent on the engineered environment within each reactor. While the selection of operational parameters such as mixing, solids retention time, and digestion temperature are often selected on the basis of certain desirable outcomes such as the deactivation of human pathogens, these parameters have been shown to have a broad impact on the overall sludge digestion process. Since the current time-temperature requirements for biosolids pathogen reduction are most easily met at elevated digestion temperatures within the thermophilic range, it is certainly worth examining the effect of specific digestion temperatures on ancillary factors such as operational stability and the aesthetic quality of biosolids.
A series of experiments were carried out in which wastewater sludge was digested at a range of temperatures (35°C, 49°C, 51°C, 53°C, 55°C, 57.5°C). Each reactor was operated for a period at steady state in order to make observations of microbial activity, digestion performance, and biosolids aesthetics as affected solely by digestion temperature. Results of this study show that poor operational stability arises in reactors operated at 57.5°C. Elevated concentrations of hydrogen and short-chain fatty acids in the 57.5°C digesters are evidence that the observed temperature-induced digester failures are related to the temperature sensitivity of hydrogenotrophic (CO₂-reducing) methanogens. Reactors operated at other temperatures performed equally well with respect to solids removal and operational stability.
In addition, peak volatile organic sulfur compound (VOSC) production from biosolids treated at 51°C and above was greatly reduced in comparison with mesophilic anaerobic digestion and a lower temperature (49°C) thermophilic system. Since the biosolids methanogenic community appeared to be equally capable of degrading VOSC over the range of thermophilic temperatures, the conclusion is that the activity of VOSC producing organisms in digested and dewatered biosolids is greatly reduced when operating temperature in excess of 51°C are used.
This study shows that small changes in an operationally defined parameter such as digestion temperature can have a large impact on the performance and stability of a digestion process. Single minded selection of digestion temperature in order to achieve effective pathogen reduction can result in poor digester performance and the production of an aesthetically unacceptable product. Careful selection, however, of an appropriate digestion temperature can not only ensure successful pathogen reduction in compliance with current regulations, but can also improve the performance, stability, and aesthetic quality of digestion systems employing thermophilic anaerobic digestion. / Master of Science
|
46 |
Changes in Dewatering Properties Between the Thermophilic and Mesophilic Stages in TPAD SystemsBivins, Jason Lee 18 December 2000 (has links)
Temperature-phased anaerobic digestion (TPAD) has become increasingly appealing in recent years due to the pathogen destruction capabilities of the system. However, there has also been concern about the dewatering properties of the sludges created by these systems. A laboratory study was conducted at Virginia Tech to determine the effect of thermophilic solids retention time (SRT) on sludge dewatering properties, to characterize system parameters associated with dewatering, and to understand the mechanisms causing changes in dewatering properties between the thermophilic and mesophilic phases. The study showed that while anaerobic digestion caused dewatering properties to deteriorate, sludges varied little with thermophilic SRT. Acidogenesis was essentially complete after 1.5 days. Subsequent mesophilic digestion resulted in little change to dewatering properties and modest reductions in conditioning doses, but substantial reductions in biopolymer (protein + polysaccharides) occurred. It appears that thermophilic anaerobic digestion creates or releases colloidal materials that cause dewatering to be poor and subsequent mesophilic digestion for 15 days does little to improve sludge properties of TPAD systems. / Master of Science
|
47 |
Comparative Studies of Alternative Anaerobic Digestion TechnologiesInman, David C. 12 November 2004 (has links)
Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale digestion systems at varying solids retention times (SRT) and organic loading rates (OLR). The digesters were fed a blend of primary and secondary residuals from the Blue Plains wastewater treatment facility.
In each study phase, temperature phased anaerobic digestion was compared to single stage mesophilic digestion (the industry standard) at the same SRT. Single stage thermophilic digestion was evaluated by sampling the first thermophilic stage of the temperature phased digestion systems throughout the study. Additionally, the first phase study compared acid/gas phased digestion to temperature phased and single stage mesophilic digestion.
Results of the study demonstrated that the temperature phased digestion system consistently performed better than the other systems during each study phase by having higher volatile solids reduction (VSR), higher methane production, and lower residual biological activity. The highest observed VSR during the study (67%) occurred in a temperature phased digestion system operated at 7.5 days in each stage. Based on these results, it seems a suitable candidate for the Blue Plains digestion facility. Additionally, odor studies performed in conjunction with the research presented in this paper have shown distinct advantages for the temperature phased process. / Master of Science
|
48 |
Ecology of natural thermophilic communities in the Tibet Autonomous Region (China)Lau, Chui-yim., 劉翠艷. January 2007 (has links)
published_or_final_version / abstract / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
|
49 |
Development of a flat sheet woven fabric membrane fermenter for xylanase production by Thermomyces lanuginosusThorulsley, Venessa January 2015 (has links)
Submitted in fulfilment of the requirements for the degree of Master of Engineering, Durban University of Technology, Durban, South Africa, 2015. / Fermentation processes are vital for the production of numerous bioproducts. Fermentation being the mass culture of micro – organisms for the production of some desired product, is an extensive field, with immense prospects for study and improvement. Enzyme production is of significance as these proteins are biological catalysts, finding niches in numerous industries, xylanase for example is utilized in the pulp and paper, animal feed, biofuel and food production processes. During enzyme production, a critical step is biomass separation, whereby the valuable product, the enzyme, is removed from the broth or micro – biological culture before it is denatured. This is typically achieved via centrifugation.
The aim of this study was to develop and evaluate a submerged membrane fermenter system with the specific outcome of increasing the rate of production of xylanase, from the thermophilic fungal species Thermomyces lanuginous DSM 5826. Preliminary shake flask experiments were performed to determine the optimal production conditions, followed by partial characterization of the enzyme. A bioreactor was then fabricated to include a flat sheet membrane module, with outlets for permeate and broth withdrawal and inlets for feed and sterile air input. Experiments were conducted to determine the optimal dilution rate for maximum volumetric productivity. Results from the shake flask experiments indicated that the best conditions for xylanase production, yielding xylanase activity of 5118.60 ± 42.76 U.mL-1 was using nutrient medium containing beechwood xylan (1.5 % w/v), yeast extract (1.5 % w/v), potassium dihydrogen phosphate (0.5 % w/v), adjusted to a pH of 6.5 and inoculated with 1.0 mL of spore solution, rotating in a shaking incubator set to 150 rpm at 50 °C. Apart from analysis of the effect of the carbon source on xylanase activity, coarse corn cobs were used in the shake flask experiments as a cost saving initiative. The pH optima was determined to be 6.5 while the temperature optima of the enzyme was 70 °C. SDS PAGE analysis revealed that the molecular weight of the enzyme was between 25 and 35 kDa and qualitative analysis via a zymogram revealed clear zones of hydrolysis on a xylan infused agarose gel.
During short run membrane fermenter experiments the percentage increase in enzyme activity between the batch operation (610.58 ± 34.54 U.mL-1) and semi – continuous operation (981.73 ± 55.54 U.mL-1) with beechwood xylan nutrient replenishment was 60.78 %. The maximum volumetric productivity achieved with beechwood supplementation after 192 hours in semi – continuous operation (5.32 ± 0.30 U.mL-1.hr-1) was 2.1 times greater than that of batch operation (2.54 ± 0.14 U.mL-1.hr-1) which equates to an increase of 110.28 % in productivity measured at its peak. The increase in total activity between batch (610 576.92 U) and beechwood xylan medium supplemented semi – continuous mode (1 184 937.50 U) resulted in a 94.07 % increase.
During long run experimental periods, the increase in production of xylanase between the batch (873.26 ± 61.78 U.mL-1) and the xylan medium membrane system (1522.41 ± 107.65 U.mL-1) was determined to be 74.34 % while an overall average increase in productivity between the batch and xylan fed membrane system was 43.25%. The total enzyme activity with in membrane mode with beechwood xylan nutrient medium feed was 160 % greater than the batch process offering a 2.6 – fold increase. Experiments where de – ionized water was alternated with beechwood xylan nutrient medium had no significant impact on the productivity or enzyme activity. The optimal dilution rate for maximum volumetric productivity as determined to be 0.0033 hr-1. The results are indicative of the potential viability of such a design, yielding the desired outcome of a membrane integrated system to significantly increase the production of enzymes during fermentation.
|
50 |
An Evaluation Of Vermicompost As A Fast-Acting Nitrogen Amendment To Mitigate Nitrogen Deficiencies In Organic Vegetable ProductionAustin, Peter Dalton 01 January 2015 (has links)
For sustained production, organic agriculture depends on plant needs being synchronized with the release of nutrients from organic amendments during decomposition within the soil. Because decomposition is strongly dependent on soil moisture and temperature, nutrient needs may not always be met as planned or synchronous with plant need. Unlike conventional agriculture, fast acting amendments are not readily available. Much of the evidence that vermicompost benefits crop production comes from studies on seed germination and production of starts in greenhouses. Yet, there is a dearth of information derived from field studies. Soil, soil and water nitrogen, plant development, and marketable yield were investigated by implementing field plot trials with both starts grown in greenhouses (Experiment 1) and directly seeded (Experiment 2) crops to test hypotheses on fertility, economics and environmental impacts.
Results from Experiment 1 showed that plant production was dramatically increased both in the greenhouse as well as subsequently in the field for vermicompost treatments and directly correlates to economic differences. Results from Experiment 2 show that plant production differences between compost treatments vary by site. There was no significant difference in soil and soil water NO3-N, NH4-N and Total Inorganic Nitrogen (TIN) among treatments, site or experiment. The timely rate of plant development in greenhouse started VC treatments shows great potential to be the first to market with fresh produce when other treatments are still waiting to transplant.
|
Page generated in 0.0762 seconds