• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 50
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 183
  • 46
  • 23
  • 22
  • 21
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Mesophilic and thermophilic biohydrogen and bioelectricity production from real and synthetic wastewaters / Production de biohydrogène et de bioélectricité mésophile et thermophile à partir d'eaux usées réelles et synthétiques

Dessi, Paolo 23 May 2018 (has links)
La fermentation sombre et les piles à combustible microbiennes (MFC) sont deux technologies émergentes respectivement pour la conversion biologique de l'énergie chimique des composés organiques en hydrogène (H2) et en électricité. En raison des avantages cinétiques et thermodynamiques, la température élevée peut être la clé pour augmenter à la fois la production d'H2 de fermentation sombre et la production d'électricité dans les MFC. Par conséquent, cette thèse se concentre sur la manière dont la température influence la production biologique de H2 et d'électricité à partir d'eaux usées contenant du carbone organique. Deux inocula traités thermiquement (à boues activées fraîches et digérées) ont été comparés pour la production de H2 à partir de xylose à 37, 55 et 70 °C. A la fois à 37 et 55 °C, on obtient un meilleur rendement en H2 par les boues activées fraîches comparé aux boues digérées tandis qu'un très faible rendement en H2 est obtenu par les deux inocula à 70 °C. Ensuite, quatre prétraitements d'inoculum différents (chocs acides, alcalins, thermiques et de congélation) ont été évalués pour créer une efficace communauté productrice de H2 mésophile (37 °C) ou thermophile (55 °C). Les chocs acides et alcalins ont sélectionné des micro-organismes producteurs de H2, appartenant aux Clostridiaceae, au détriment des bactéries produisant du lactate, ce qui a donné respectivement le rendement en H2 le plus élevé à 37 et 55 °C. Bien que le choc thermique ait abouti à un faible rendement en H2 dans un seul lot, il a été montré que la production de H2 par les boues activées fraîches traitées thermiquement augmentait dans l'expérience avec quatre cycles consécutifs. Des boues activées fraîches et traitées thermiquement ont été sélectionnées comme inoculum pour la production continue de H2 à partir d'une eau usée synthétique contenant du xylose dans un réacteur à lit fluidisé (FBR) mésophile (37 °C) et thermophile (55-70 °C, augmenté par étapes). Un rendement en H2 plus élevé a été obtenu dans le FBR thermophile que dans le FBR mésophile. En outre, la production de H2 à 70 °C, qui a échoué dans l'étude précédente, a été couronnée de succès dans le FBR, avec un rendement stable de 1.2 mol H2 mol-1 xylose. La température de fonctionnement de 70 °C s'est également révélée optimale pour la production de H2 à partir d'eaux usées thermomécaniques (TMP) dans un incubateur à gradient de température, car la culture en batch à 70 ° C. Une approche de l'ARN a été utilisée pour étudier la structure et le rôle des communautés microbiennes attachées à l'anode, attachées à la membrane et planctoniques dans un MFC mésophile (37 °C) et thermophile (55 °C) alimenté au xylose. Une communauté anodine dominée par Geobacteraceae a soutenu la production d'électricité à 37 °C, alors que l'établissement de micro-organismes méthanogènes et H2 oxydants a entraîné une faible production d'électricité à 55 °C. Cependant, le développement d'une communauté exoélectrogène thermophile peut être favorisé en appliquant une stratégie de démarrage qui comprend l'imposition d'un potentiel négatif à l'anode et l'inhibition chimique des méthanogènes. Une communauté exoélectrogénique mésophile a également été montré pour produire de l'électricité à partir d'eaux usées de TMP dans un MFC à flux ascendant exploité à 37 °C. En conclusion, une production de H2 plus élevé et plus stable peut être obtenu dans une fermentation sombre thermophile plutôt que mésophile. La fermentation sombre à 70 °C est particulièrement appropriée pour le traitement des eaux usées de TMP car elle est libérée à haute température (50-80 °C) et pourrait être traitée sur site. Les eaux usées de TMP peuvent également être utilisées comme substrat pour la production d'électricité dans les MFC mésophiles. La production d'électricité dans les MFC thermophiles est faisable, mais l'enrichissement des micro-organismes exoélectrogènes thermophiles peut nécessiter une longue période de démarrage / Dark fermentation and microbial fuel cells (MFCs) are two emerging technologies for biological conversion of the chemical energy of organic compounds into hydrogen (H2) and electricity, respectively. Due to kinetic and thermodynamic advantages, high temperature can be the key for increasing both dark fermentative H2 production and electricity production in MFCs. Therefore, this thesis focuses on delineating how temperature influences biological production of H2 and electricity from organic carbon-containing wastewaters. Two heat-treated inocula (fresh and digested activated sludge) were compared, for H2 production from xylose at 37, 55 and 70 °C. At both 37 and 55 °C, a higher H2 yield was achieved by the fresh than digested activated sludge, whereas a very low H2 yield was obtained by both inocula at 70 °C. Then, four different inoculum pretreatments (acidic, alkaline, heat and freezing shocks) were evaluated for creating an efficient mesophilic (37 °C) or thermophilic (55 °C) H2 producing community. Acidic and alkaline shocks selected known H2 producing microorganisms belonging to Clostridiaceae at the expenses of lactate producing bacteria, resulting in the highest H2 yield at 37 and 55 °C, respectively. Although a heat shock resulted in a low H2 yield in a single batch, H2 production by the heat-treated fresh activated sludge was shown to increase in the experiment with four consecutive batch cycles.Heat-treated fresh activated sludge was selected as inoculum for continuous H2 production from a xylose-containing synthetic wastewater in a mesophilic (37 °C) and a thermophilic (55-70 °C, increased stepwise) fluidized bed reactor (FBR). A higher H2 yield was obtained in the thermophilic than in the mesophilic FBR. Furthermore, H2 production at 70 °C, which failed in the earlier batch study, was successful in the FBR, with a stable yield of 1.2 mol H2 mol-1 xyloseadded. Operation temperature of 70 °C was also found optimal for H2 production from thermomechanical pulping (TMP) wastewater in a temperature gradient incubator assay.A RNA approach was used to study the structure and role of the anode-attached, membrane-attached and planktonic microbial communities in a mesophilic (37 °C) and a thermophilic (55 °C) two-chamber, xylose-fed MFC. An anode attached community dominated by Geobacteraceae sustained electricity production at 37 °C, whereas the establishment of methanogenic and H2 oxidizing microorganisms resulted in a low electricity production at 55 °C. However, the development of a thermophilic exoelectrogenic community can be promoted by applying a start-up strategy which includes imposing a negative potential to the anode and chemical inhibition of methanogens. A mesophilic exoelectrogenic community was also shown to produce electricity from TMP wastewater in an upflow MFC operated at 37 °C. In conclusion, a higher and more stable H2 yield can be achieved in thermophilic rather than mesophilic dark fermentation. Dark fermentation at 70 °C is particularly suitable for treatment of TMP wastewater as it is released at high temperature (50-80 °C) and could be treated on site. TMP wastewater can be also used as substrate for electricity production in mesophilic MFCs. Electricity production in thermophilic MFCs is feasible, but enrichment of thermophilic exoelectrogenic microorganisms may require a long start-up period
72

Biochemical Characterization of β-Xylan Acting Glycoside Hydrolases from the Thermophilic Bacterium Caldicellulosiruptor Saccharolyticus

Cao, Jin January 2012 (has links)
No description available.
73

THE EFFECTS OF TURNING ON MICROORGANISM COMMUNITIES AND NUTRIENT AVAILABILITY AT A CLASS III COMPOSTING FACILITY

SEARS, MANDY 14 March 2002 (has links)
No description available.
74

Production and characteristics of a b-glucosidase from a thermophilic bacterium and investigation of its potential as part of a cellulase cocktail for conversion of lignocellulosic biomass to fermentable sugars

Masingi, Nkateko Nhlalala January 2020 (has links)
Thesis (Ph. D. (Microbiology)) -- University of Limpopo, 2020 / The use of lignocellulosic biomass for bioethanol production is largely dependent on cost effective production of cellulase enzymes and most importantly, the availability of cellulases with sufficient β-glucosidase activity for complete hydrolysis of cellulose to glucose. Commercial cellulase preparations are often inefficient in the complete hydrolysis of cellulose to glucose. The addition of β-glucosidases to commercial cellulase preparations may enhance cellulolytic activity in the saccharification of cellulose to fermentable sugars. A β-glucosidase producing thermophilic bacterium, Anoxybacillus sp. KTC2 was isolated from a hot geyser in the Zambezi Valley, Zimbabwe. The bacterium identified through biochemical tests and 16S rDNA sequencing, had an optimal growth temperature and pH of 60˚C and pH 8, respectively. The β-glucosidase enzyme had an optimal temperature of 60˚C and a broad pH range for activity, between 4.5 and 7.5 with an optimum at pH 7. The β-glucosidase enzyme retained almost 100% activity after 24 hours’ incubation at 50˚C. The Anoxybacillus sp. KTC2 β-glucosidase was partially purified and a partial amino acid sequence obtained through MALDI-TOF analysis. The whole genome of Anoxybacillus sp KTC2 β-glucosidase was sequenced and a β-glucosidase gene identified. The deduced amino acid sequence corresponded to the peptide sequences obtained through MALDI-TOF, confirming the presence of the a β glucosidase on the genome of Anoxybacillus sp KTC2. Analysis of the deduced amino acid sequence revealed that the β-glucosidase enzyme belongs to the GH family 1. The β-glucosidase gene was isolated by PCR and successfully cloned into an E. coli expression system. The saccharification efficiency of the β-glucosidase enzyme was evaluated through the creation of enzyme cocktails with the commercial cellulase preparation, CelluclastTM. CelluclastTM with the Anoxybacillus sp KTC2 β-glucosidase were used to hydrolyse pure Avicel cellulose, at 50˚C over a 96 hour reaction time. The Anoxybacillus sp KTC2 β-glucosidase enabled a 25% decrease in the total cellulose loading without a decrease in the amount of glucose released. / University of Limpopo staff development programme and VLIR
75

In-vessel composting model with multiple substrate and microorganism types

Woodford, Philip Bernard January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / James K. Koelliker / This research provides a deterministic model of in-vessel composting, based on Monod’s growth kinetics, to mirror biological-mixture decomposition. Existing models predict temperature curves assuming a single temperature-range organism, using a soluble (simple sugar) substrate, with bacteria as the microorganism, and they ignore the different temperature range environments that impact the growth rates of mesophilic and thermophilic microorganisms. The new computer-simulated model, written in MATLAB® by The MathWorks, has six unique features. First, three major carbon chain substrate groups are utilized: soluble, hemicellulose/cellulose, and lignin. An additional substrate group is used for inert substrates. Second, three major microorganism groups are utilized: bacteria for soluble substrate, actinomycetes for cellulose substrate, and fungi for lignin substrate. Third, two temperature-range microorganisms are included: mesophilic and thermophilic. Fourth, the model accounts for the death of microorganisms as the temperature transitions between the temperature ranges. Most of the dead cellular mass is returned to soluble substrate for reutilization and a portion is considered resistant to biological decomposition and is added into the lignin substrate. Fifth, stoichiometric equations account for substrate and microorganism compositions, oxygen and nitrogen requirements, and carbon dioxide and water production. Sixth, the relationship between biological activity and water is better defined. Experimental research was conducted to validate the model. Laboratory analysis distinguished the substrate types. The results indicate the model did differentiate between different levels of substrate types, and the mesophilic and thermophilic microorganism types. Also, the model did differentiate between the bacteria, actinomycetes and fungi. The influence was small, however, because of the different maximum growth rates of the three types of microorganisms. Returning dead microbes to the substrate pools as a result of temperature transitions affected the model results positively. Additional research is needed to account for the influence of volume reduction, develop a better microbial growth curve, include particle size influence, add temporal temperature fluctuations to the external boundary conditions, incorporate pH and nitrogen availability, and develop a three-dimensional model. KEY WORDS. Aerobic composting, mathematical composting model, substrate types, microorganism types, microorganism temperature range, mesophilic, thermophilic, microbial death utilization, moisture composting relationship.
76

Xylanase hyper-producer : the genome of the thermophilic fungus Thermomyces lanuginosus

Mchunu, Nokuthula Peace 08 August 2014 (has links)
Submitted in complete fulfillment of the requirements for the Degree of Doctor of Technology: Biotechnology, Durban University of Technology, Durban, South Africa. 2014. / The global demand for green technology has created a need to search for microbes that can play an active role in advancing a greener and cleaner future. Microbial enzymes are nature’s keys to life and their efficiency, specificity and environmental-friendliness has lead to their increased use in industrial processes. Thermomyces lanuginosus is a thermophilic fungus that can degrade plant biomass and produces a variety of enzymes that have industrial application. The fungus T. lanuginosus SSBP has been reported in literature to produce the highest level of xylanase among other Thermomyces strains and some of its enzyme s viz., amylase and lipase are already being used. Because of this ability, it has been identified as one of the organisms that can have various industrial applications. Although a few proteins from this fungus have been cloned and used commercially, the vast majority are still unknown. In order to identify new protein candidates and understand their biochemical interactions, the T. lanuginosus genome (DNA) and the transcriptome (mRNA) were sequenced using 454 Roche and Solexa sequencing platforms. Genome and transcriptome data was assembled using Newbler software forming a genome size of 23.3 Mb contained 30 scaffolds. Protein prediction identified 5105 candidates as protein-coding genes and these gene models were supported by expressed sequence tag and transcriptomic data. The annotated data was assembled into metabolic pathways in order to identify functional pathways and validate the accuracy of the annotation process. T. lanuginosus is usually found in composting plant material thus protein related to plant hydrolysis were analysed. The total number of plant biomass-degrading and related proteins that fall into the carbohydrate-active enzyme (CAZy) family was 224. Most of these proteins were similar to proteins found in other filamentous fungi. Surprisingly, T. lanuginosus contained a single gene coding for xylanase which hydrolyses xylan although this organism is well known for being among the highest producers of this enzyme. An important subset of the above group of proteins is the cellulose degrading-proteins as this can be used in biofuel production. Eight candidates belonging to this group were identified, making this fungus significant in the biofuels. Among the eight cellulase candidates, phylogenetic analysis revealed that three of them were closely related to Trichoderma reesei, a well known industrial cellulase-producer. Utilization of cellulase-related compounds was validated by phenotypic microarray experiments, with cellobiose having inducing biomass in T. lanuginosus. Proteins that are involved in high temperature survival are vital for the survival. of this thermophilic fungus. Interestingly, T. lanuginosus contains 19 heat shocking proteins which are responsible for thermostability. Another adaptation identified in this fungus is the accumulation of trehalose to combat heat stress. Furthermore, T. lanuginosus contains the highest reported number methyltransferases, which have been linked to producing thermostable proteins and higher energy production. Also because of this organism’s ability to grow on composting environments, the assimilation and ability to produce biomass on different carbon sources were analysed using phenotypic microarray technique. The results showed that xylose was the best compound to induce biomass followed by trehalose, maltose and maltotriose. The genomic sequencing of this fungus has provided valuable information that can be used for various biotechnological applications, as well as providing greater insights into its thermostability. Understanding the metabolic pathways involved may allow for manipulation to increase production of these enzymes or cloning into other hosts. This can have an impact in the field of biofuel production and other plant biomass-related processes.
77

Characterisation of Sulfolobus solfataricus Ard1, a promiscuous N-acetyltransferase

Mackay, Dale Tara January 2008 (has links)
Compaction of DNA into chromatin is an important feature of every living cell. This compaction phenomenon is brought about and maintained by a variety of DNA binding proteins, which have evolved to suit the specific needs of the different cell types spanning the three kingdoms of life; the eukaryotes, prokaryotes and archaea. Sulfolobus solfataricus, a member of the crenarchaeal subdivision of the archaea, has two prominent DNA binding proteins known as Alba (1&2) and Sso7d. Alba1 is acetylated in vivo at two positions and this modification lowers its’ affinity for binding DNA. Acetylation levels impact many cellular processes and in higher organisms play a critical role in the development of many cancers and other diseases. This thesis documents the finding and characterisation of the N-terminal acetyltransferase (ssArd1) of SsoAlba1, based on its’ sequence homology to the catalytic subunits Ard1, Nat3 and Mak3 belonging to the larger eukaryal Nat complexes NatA, NatB and NatC, respectively. Mutagenesis studies revealed that ssArd1 preferentially acetylates N-termini bearing a serine or alanine residue at position 1 (after methionine cleavage). It is also capable of acetylating other proteins with very different physical structures. These findings allow classification of ssArd1 as a promiscuous acetyltransferase belonging to the Gcn5-N-acetyltransferase (GNAT) superfamily. The active site of the enzyme was examined through mutagenesis studies, revealing that the mechanism of acetylation is likely to proceed through a direct acetyl transfer involving a tetrahedral intermediate. Structural studies provided some insight into the molecular structure of ssArd1.
78

The chitinolytic enzyme system of the compost-dwelling thermophilic fungus Thermomyces lanuginosus

Zhang, Meng January 2014 (has links)
Submitted in complete fulfillment for the Degree of Master of Technology (Biotechnology), Durban University of Technology, Durban, South Africa, 2014. / Chitin, a highly insoluble 1,4- -linked polymer of N-acetyl- -D-glucosamine, is the second-most abundant bio-polysaccharide in nature after cellulose. Most chitinolytic fungi are known to produce more than one kind of chitinase. The recent sequencing of the Thermomyces lanuginosus SSBP genome by our group has revealed four putative family 18 chitinases. In this study, three novel chitinase genes (chitl, chit2 and chit3) and the previously reported chit4 gene were cloned from Thermomyces lanuginosus SSBP and their gene structures were analysed. chit3, encoding a 36.6 kDa protein, and chit4, encoding a 44.1 kDa protein, were successfully expressed in Pichia pastoris. The recombinant Chit3 and Chit4 enzymes exhibited optimum activity at pH 4.0 and 5.0 and at 40oC and 50°C, respectively. Chit3 was stable at 40oC and retained 71% of its activity at 50°C after 60 min, while Chit4 was stable at 50°C and retained 56% of its activity at 60°C after 30 min. Both enzymes produced chitobiose as the major product using colloidal chitin, chitooligosaccharides and shrimp shell powder as substrates. Of the fungal strains tested, Chit3 displayed antifungal activity against Penicillium sp. and Aspergillus sp. This is the first report on the multi-chitinolytic system of T. lanuginosus and enzyme characterization has shown the potential of the enzymes to be used in degradation of the under-utilized bio-resource chitin. / PDF Full-text unavailable. Please refer to hard copy for Full-text / M
79

Análise e caracterização do secretoma do fungo termofílico Malbranchea pulchella linhagem 6278 / Secretome analysis and characterization of thermophilic fungus Malbranchea pulchella strain 6278

Nogueira, Carlaile Fernanda de Oliveira 20 April 2017 (has links)
A despolimerização enzimática de componentes de biomassa é um processo chave para indústrias de bioenergia. A busca por novas enzimas aumentou os estudos dos secretomas de microrganismos degradadores de biomassa. Os fungos filamentosos são importantes agentes na reciclagem de carbono na natureza, apresentando potenciais enzimas para a conversão de biomassa. Malbranchea pulchella é um ascomiceto termofílico bioprospectado na Floresta Atlântica (região de Minas Gerais-Brasil), cuja análise e caracterização do secretoma, juntamente com a capacidade de biodegradação, foram foco deste estudo. O cultivo semi-sólido deste fungo em substratos lignificado (madeira de eucalipto moída) e \"não lignificado\" (polpa Kraft branqueada) por 60 dias resultou em perdas de peso de cerca de 5% e 52%, respectivamente. Para o estudo da diversidade das enzimas produzidas por M. pulchella, o secretoma foi avaliado em culturas submersas de 3 dias, utilizando as fontes de carbono anteriormente mencionadas. Os resultados de LC-MS/MS mostraram que o fungo foi capaz de secretar uma série de enzimas lignocelulolíticas. As enzimas proeminentes foram as glicosil-hidrolases com um total de 29 e 37 CAZymes nos substratos lignificado e \"não-lignificado\", respectivamente, sendo as famílias GH3 e GH18 encontradas em maior número. Considerando as enzimas oxidativas, um total de 12 e 13 CAZymes nos substratos lignificado e \"não lignificado\", respectivamente, sendo as famílias AA7 e AA9 as mais predominantes. Também foram detectadas proteínas não-CAZymes apresentando domínios alergênicos, que estão relacionados com proteínas semelhantes a expansinas de plantas. O secretoma produzido com substrato de polpa branqueada foi utilizado em ensaio de hidrólise com polpa Kraft e também em contribuição com Celluclast 1,5 L para hidrólise de polpa de dissolução e de Avicel. Os resultados indicaram que M. pulchella produz uma maquinaria enzimática interessante, que pode degradar celulose amorfa e cristalina, sendo potencial aplicação em hidrólise da biomassa lignocelulósica. / Enzymatic depolymerization of biomass components is a key process for bioenergy industries. The search for new enzymes for this task has increased secretome studies in biomass-degrading microorganisms. Filamentous fungi are important players in carbon recycling in nature, presenting potential enzymes for biomass conversion. Malbranchea pulchella is a thermophilic ascomycete bio prospected in Brazilian Atlantic forest whose secretome analysis and characterization together with biodegradation ability were focus of this study. Semi-solid cultivation of this fungus on lignified (milled eucalyptus wood) and non-lignified (bleached eucalyptus pulp) substrates for 60 days resulted in almost 5% and 52% weight losses, respectively. To understand the diversity of enzymes produced by M. pulchella the secretome was evaluated in 3-day submerse cultures using the previously mentioned carbon sources. LC-MS/MS results showed the fungus was able to secrete an array of lignocellulolytic enzymes. The prominent enzymes were glycosyl hydrolases with a total of 29 and 37 CAZymes in lignified and non-lignified substrates, respectively, with GH3 and GH18 families found in greatest number. Considering the oxidative enzymes, a total of 12 and 13 CAZymes were found in lignified and non-lignified substrates, respectively, being AA7 and AA9 families most expressive. Non-CAZymes proteins showing allergen domains, which are related with expansin-like proteins from plants, were also detected. The secretome produced with bleached eucalyptus pulp substrate was assayed for hydrolysis of Kraft pulp and in contribution with Celluclast 1.5 L for dissolving pulp and Avicel hydrolysis as well. Results indicated that M. pulchella produce an interesting enzymatic array that can disrupt both amorphous and crystalline cellulose, demonstred as potencial secretome for biomass hydrolysis.
80

Processo aerado termofílico combinando biomassa aderida e suspensa para tratamento de água residuária sintética de indústria de geleias e compotas de frutas / Aerated thermophilic process combining attached and suspended biomass in the synthetic wastewater from jams and jellies industries treatment

Pereira, Tiago Duarte Santos 26 June 2014 (has links)
Este trabalho foi teve como objetivo avaliar o desempenho do tratamento aerado combinando biomassa aderida e suspensa, em diferentes condições de temperatura (25ºC, 27ºC, 45ºC e 55ºC), na remoção da matéria orgânica. Foi utilizada uma água residuária sintética simulando o efluente da indústria de geleias e compotas de frutas. Os dois reatores operados foram construídos em aço inox com diâmetro de 15 cm, 58,0 cm de altura e volume útil de 10,25 L, sendo 5,125 L preenchidos com meio suporte. O experimento se deu em duas fases. Na primeira (75 dias) o reator R1 foi operado a 25ºC e o R2 a 45ºC, na segunda (60 dias) a 27ºC e 55ºC, respectivamente. O TDH variou de 10,39h a 11,86h e a carga orgânica volumétrica aplicada de 2,82 kg.m-3.d-1 a 3,51 kg.m-3.d-1. As maiores eficiências de remoção de DQO foram observadas nos reatores R1(25ºC) e R2(45ºC): 80,27±11,97% e 78,41±6,41%, respectivamente. Estas médias não diferiram entre si. A colonização do meio suporte foi satisfatória, exceto a 55ºC onde se verificou a diminuição da aderência da biomassa. Foi observado o intumescimento do lodo nas duas fases experimentais, provavelmente devido à alta biodegradabilidade da água residuária, e um maior valor de SSV no efluente dos sistemas termofílicos. Os ensaios cinéticos apontaram para uma menor dependência do sistema na parcela suspensa da biomassa para a eficiência global. A análise do DGGE mostrou diminuição na diversidade entra a biomassa aderida do reator mesofílico (25ºC) e a biomassa aderida do reator termofílico (45ºC), entretanto, esta mudança não foi tão evidente de 45ºC para 55ºC. / The aim of this study was to investigate the attached and suspended biomass performance in the organic matter removal of a synthetic jams and jellies wastewater at different temperature (25ºC, 27ºC, 45ºC and 55ºC). Two stainless steel reactors, 15 cm diameter and 58 cm high were used. The working volume was 10,25 L and the support medium occupied 5,125 L. The experiment was developed in two stages. The first stage lasted 75 days, the R1 and R2 reactors operated at 25ºC and 45ºC, respectively. The second stage lasted 60 days and the reactors operated at 27ºC and 55ºC, respectively. The HRT ranged between 10,39h and 11,86h and the volumetric load between 2,82 kg.m-3.d-1 to 3,51 kg.m-3.d-1.The highest removal efficiencies of COD occurred in R1(25ºC) and R2(45ºC) reactors: 80,27±11,97% and 78,41±6,41%, respectively. These results were not statistically different. The colonization of the support medium was satisfactory, except at 55ºC, as in this condition it was observed decreased adhesion of biomass. Bulking occurred in both stages of the experiment, probably due to the high biodegradability of this wastewater, and a highest value of MLVSS in the effluent of the thermophilic systems. The kinect experiments appointed that the suspended biomass play a minor role in the global efficiency of the system. The DGGE analysis have shown reduction in diversity when the temperature increases from 25ºC to 45ºC, nevertheless, this change was not so clear from 45ºC to 55ºC.

Page generated in 0.045 seconds