101 |
Acid-base and Cd�⁺ adsorption properties of two thermophilic bacteriaHeinrich, Hannah Tabea Monika, n/a January 2007 (has links)
The release of toxic metal species is of concern due to their detrimental effects on the environment and human health. Industrial effluents are a major source of mobilised metal species. Suitable technologies are needed to sequester toxic metal species at the point of source. Biosorption, which is based on the passive adsorption of contaminants onto biological materials, promises to offer an effective alternative or complementary step to existing treatment methods. However, to date there has been no widespread commercialisation of the technique. This is partly due to an insufficient understanding of the complex underlying mechanisms which makes it difficult to select suitable biomass for specific remediation problems and to predict process performance.
This study characterised two gram-positive, thermophilic bacteria, Anoxybacillus flavithermus (BF) and Geobacillus stearothermophilus (BS), harvested at two different growth times, with regard to their acid-base and Cd�⁺ adsorption behaviour. The aim was to investigate the metal cation adsorption properties of thermophilic bacteria which has not been studied previously, and to gain a better understanding of the interactions responsible for bacterial metal cation adsorption. Experimental techniques employed in this study included microscopy to establish cell and cell wall morphology, batch acid-base and Cd�⁺ adsorption experiments to quantify proton active surface functional groups and Cd�⁺ adsorption, electrophoretic mobility measurements to assess the overall surface charge of the bacteria and in situ attenuated total reflection infrared (ATR-IR) spectroscopy to reveal the chemical identities of functional groups. Chemical equilibrium models based on batch acid-base titration and electrophoretic mobility data were developed to quantitatively describe proton active surface functional groups. These groups can also interact with metal cations.
It was found that growth time was an important factor in all experiments with the differences between growth times often being more pronounced than the differences between the two bacterial strains. Microscopy revealed a gram-positive cell wall structure with different widths and staining behaviour for exponential phase cells of BF and BS. Stationary / death phase cells showed disintegrating cell walls. Acid-base titrations indicated that all cells possessed buffering capacity over the whole investigated pH range (pH 2 - 10). From electrophoretic mobility measurements, isoelectric points of ~ 3.2 for BF and < 1.8 and ~ 4.2 for exponential and stationary / death phase cells of BS respectively were estimated. Chemical equilibrium models including a Donnan electrostatic model were derived which described both the batch acid-base titration data and the electrophoretic mobility data reasonably well, although a comparison with IR data suggested room for further improvement. In situ ATR-IR spectroscopy of hydrated bacterial cells at various pH values revealed amide and carboxyl groups and a contribution from phosphate / polysaccharide moieties. Group specific interactions with Cd�⁺ were not detected, however, a partially reversible absorbance increase of all peaks suggested conformational changes in the presence of Cd�⁺. BF and BS adsorbed ~ 70 [mu]mol Cd�⁺ (g dry bacterial)⁻� at pH 5 in 0.01 M NaNO₃. Release of major cations occurred concomitantly with Cd�⁺ adsorption.
The buffering and Cd�⁺-binding capacities of BF and BS were found to be comparable to those of mesophilic bacteria and ion exchange was identified as an important adsorption mechanism.
|
102 |
The surface characteristics of spores from thermophilic bacilli isolated from a milk powder production line and their influence on adhesion to surfacesSeale, Richard Brent, n/a January 2009 (has links)
Spores of thermophilic bacilli are a common concern during the manufacture of milk powder. Spores are believed to occur in high numbers in milk powder due to their ability to survive pasteurisation, attach to stainless steel surfaces, germinate, grow as biofilms and subsequently enter the product stream and thereby contaminate the final product.
In this study, thirty one thermophilic bacilli isolates were obtained from a New Zealand milk powder production line and identified as either Anoxybacillus flavithermus or Geobacillus spp. using random amplified polymorphic DNA (RAPD) and species-specific PCR. Sporulation media and a polyethylene glycol two-phase separation system were modified to produce high yields of spores free from debris.
The spores of four Geobacillus spp. isolates (CGT-8, D4, E7 and E11) were characterised in terms of structure (electron microscopy), surface charge (zeta potential), hydrophobicity (contact angle and microbial adhesion to hexadecane) and attenuated total reflectance infrared spectroscopy (ATR-IR). Spores from three of the four isolates possessed an exosporium while the fourth did not. However the integrity of the exosporium varied over time. The spores were negatively charged (-10 to -20 mV) at neutral pH and high ionic strength (0.1 M KC1). Both hydrophobicity assays revealed that the spores of the four isolates were relatively hydrophilic while ATR-IR revealed the spores' surfaces consisted of protein and polysaccharides.
The influence of these spore characteristics on adhesion to a variety of substrata under high flow rates was examined using the extended Derjaguin, Landau, Verwey and Overbeek (XDLVO) theory. Spores generally attached in higher numbers to hydrophobic surfaces compared to hydrophilic surfaces, however this observation was more prevalent for isolate D4. This result indicated that a single mechanism could not describe the adhesion of spores from different strains.
A series of glass surfaces with modified characteristics were produced in order to test the antifouling properties on the adhesion of D4 spores. Spores suspended in a high ionic strength medium (0.1 M KC1) attached in greater numbers (1 Log₁₀ CFU cm⁻�) to positively charged and hydrophobic surfaces compared with negatively charged and hydrophilic surfaces. A clean in place (CIP) procedure, reduced spore numbers on hydrophobic and hydrophilic surfaces by 1.5 and by 2.0 Log₁₀ CFU cm⁻�, respectively. When spores were suspended in milk, there was little difference in the number of spores attaching to the different surfaces (ie. 3.5 to 3.8 Log₁₀ CFU cm⁻�), and spore removal from surfaces via a CIP regime was unchanged (1.5 to 2.0 Log₁₀ CFU cm⁻� reduction) compared with spores that attached in simple 1:1 electrolyte media.
The effects of a caustic wash on spore surface characteristics and adhesion was determined. There was a significant reduction in spore viability (2 Log₁₀ CFU mL⁻�) after a 30 min caustic wash at 65 �C in the current study, however surviving spores displayed a greater propensity to attach to stainless steel. Surface characterisation results revealed an increase in hydrophobicity and a greater negative charge on the spores' surface after treatment with NaOH. Surviving spores could potentially recontaminate sections of the plant which are cleaned with this recycled caustic wash solution, thereby seeding surfaces with spores at the beginning of the next processing run.
In conclusion, while surfaces that reduce spore adhesion and enhance removal can be produced, exposure to complex solutions such as milk can reduce the anti-fouling effectiveness of such surfaces to spore adhesion.
|
103 |
Improving compost process efficiency by controlling aeration, temperature and pH /Sundberg, Cecilia, January 2005 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2005. / Härtill 5 uppsatser.
|
104 |
Detection and isolation of thermophilic acidophilic bacteria from fuit juicesDuvenage, Wineen 03 1900 (has links)
Thesis (Msc Food Sc (Food Science))--University of Stellenbosch, 2006. / Fruit juices were until recently considered to only be susceptible to spoilage by yeasts, mycelial fungi and lactic acid bacteria. Spoilage by these organisms was prevented by the acidic pH of fruit juices and the heat-treatment applied during the hot-fill-hold process. Despite these control measures, an increasing number of spoilage cases of fruit juices, fruit juice products and acidic vegetables due to contamination by thermophilic acidophilic bacteria (TAB) have been reported. The genus Alicyclobacillus, containing TAB were first classified as Bacillus, but were reclassified in 1992. Species of Alicyclobacillus are Gram-positive, rod-shaped, endospore-forming bacteria. The unique characteristic of these organisms is the presence of ω-alicyclic fatty acids, such as ω-cyclohexane and ω-cycloheptane, as the major components of the cellular membrane. This organism has been shown to survive pasteurisation conditions of 95°C for 2 min and grows within a pH range of 2.5 to 6.0 and temperatures between 25° and 60°C. The genus currently consists of 11 species, with A. acidoterrestris, A. acidocaldarius and A. pomorum being the only species associated with the spoilage of fruit juices and fruit juice products.
The aim of this study was to evaluate culture-dependent and culture-independent approaches for the detection and isolation of Alicyclobacillus spp. from pasteurised South African fruit juices and concentrates. The culture-dependent approach was evaluated by comparing five different growth media, for growth and recovery of A. acidoterrestris, A. acidocaldarius and A. pomorum at different incubation temperatures, from sterile saline solution (SSS) (0.85% (m/v) NaCl), diluted and undiluted fruit juice concentrates. The five media evaluated included potato dextrose agar (PDA), orange serum agar (OSA), K-agar, yeast extract (YSG)-agar and Bacillus acidocaldarius medium (BAM). The culture-independent approach was used to identify the micro-organisms present in fruit juices and concentrates from different South African manufacturers before and after pasteurisation, using polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) and DNA sequencing.
Spread plates of PDA at pH 3.7 and incubation temperature of 50°C for 3 days was found to be the best isolation media for species of Alicyclobacillus from fruit juice and fruit juice concentrate. With the inclusion of a heat shock treatment at 80°C for 10 min the growth media of preference for spores of Alicyclobacillus from fruit juice concentrates was OSA at pH 5.5 and an incubation temperature of 50°C for 3 days. The culture-dependent approach could detect cells or endospores at a minimum concentration of 104 cfu.ml-1 in SSS and diluted fruit juices.
PCR-based DGGE analysis was more sensitive and detected cells of Alicyclobacillus spp. from fruit juices and concentrates at a minimum concentration of 103 cfu.ml-1. Alicyclobacillus acidoterrestris was found to be present in South African apple juice, pear juice, white grape juice and aloe vera juice. White grape juice was also found to contain A. pomorum. Other organisms present in the orange, apple, mango and pear juices were two uncultured bacteria that were identified as members of the genus Bacillus, and one uncultured bacterium closely related to Alcaligenus faecalis. This study confirmed the presence of TAB in pasteurised South African fruit juices and concentrates and emphasises the need for the rapid and accurate detection of TAB in food products.
|
105 |
Thermophilic and Hyper-thermophilic Anaerobic Co-digestion of Thickened Waste Activated Sludge and Fat, Oil, and GreaseAlqaralleh, Rania Mona Zeid 28 November 2018 (has links)
In this thesis, the anaerobic co-digestion of thickened waste activated sludge (TWAS) and, fat, oil and grease (FOG) was investigated as a method for TWAS:FOG treatment, stabilization,
reduction and conversion to bio-methane gas as a valuable source of renewable energy.
In the first phase, thermophilic and hyper-thermophilic anaerobic co-digestion of TWAS and FOG were investigated and compared. 20 – 80%FOG (based on total volatile solids) were tested using two sets of biochemical methane potential assays (BMP). Hyper-thermophilic co-digestion of TWAS with up to 60%FOG was shown to significantly increase the methane production and VS reduction as compared to the thermophilic co-digestion of the same TWAS:FOG mixture and as compared to the control (TWAS thermophilic mono-digestion). Both linear and non-linear regression models were used to represent the co-digestion results.
In the second phase, the feasibility of the thermophilic and hyper-thermophilic co-digestion of TWAS and FOG were more investigated using lab scale semi-continuous reactors. The dual
stage hyper-thermophilic reactor was introduced for the first time in this work for co-digesting TWAS and FOG. The dual stage co-digestion reactor was shown to significantly outperform the single-stage thermophilic mono-digestion reactor (the control) and the single-stage thermophilic co-digestion reactor at all three hydraulic retention times (HRTs) considered in the
study namely, 15, 12 and 9 days. The dual-stage hyper-thermophilic co-digester digested up to 70%FOG at 15 days HRT without any stressing signs and produced a methane yield that was 148.2% higher compared to the control methane yield at the same HRT. It also produced a class A effluent at all three tested HRTs and positive net energy for 15 and 12 days HRT.
The effects of microwave (MW) pretreatment, and combined alkaline-MW pretreatment on the co-digestion of TWAS:FOG mixtures with 20, 40 and 60% FOG were investigated in the third
phase of this study. MW pretreatment at a high temperature of 175ᵒC was shown to be the most effective MW pretreatment option in solubilizing TWAS:FOG mixtures and in boosting the
methane yield. It resulted in maximum solubilization for the 20%FOG samples and maximum methane yield for samples with 60%FOG. The combined alkaline-MW (NaOH-MW)
pretreatment at a pH 10 showed to be an ineffective option for TWAS:FOG pretreatment before the anaerobic co-digestion process.
In the fourth phase, the effects of the three selected pretreatments on the solubilization of TWAS and 20%FOG mixture on the molecular scale were investigated. The pretreatments used included: (i) MW pretreatment at 175ᵒC (since this was the best MW pretreatment condition according to the results of phase 3), (ii) hyper-thermophilic stage @ 70ᵒC and 2days HRT (effectively used in phases 1 and 2), and (iii) conventional heat at 70ᵒC. The analysis involved separation of the solubilized substrates after pretreatment using ultrafiltration (UF) at four different sizes (1, 10, 100 and 300 kDa). The results showed that each pretreatment method uniquely changed the particle size distribution. These changes showed to affect the biodegradability of substrates with different class size.
Finally, two brief studies were performed using BMP tests to investigate the feasibility of FOG addition as a biogas booster in TWAS anaerobic digestion. First, the effect of FOG addition on
TWAS and organic fraction of municipal solid waste (OFMSW) co-digestion was tested using hyper-thermophilic BMP tests. The addition of 30% FOG (based on total volatile solids) was shown very effective in improving the methane yield. The 30% FOG addition to TWAS:OFMSW mixture resulted in 59.9 and 84.4% higher methane yield compared to the methane yields of TWAS:OFMSW and TWAS samples, respectively. Second, the feasibility of using the soluble part of FOG (L-FOG) as a co-digestion substrate to increase the biogas production from the thermophilic digestion of TWAS was investigated. The results showed that co-digestion of TWAS and 20 to 80% (based on total VS) of L-FOG using a substrate to inoculum ratio (S/I) of 1 improved the biogas yield by 13.5 to 83.0%, respectively. No inhibition was reported at high L-FOG %.
|
106 |
Avaliação do efeito da inoculação de fungos termofílicos em pilhas de compostagem de lixo urbanoFetti, George Lucas Rodrigues [UNESP] 30 June 2014 (has links) (PDF)
Made available in DSpace on 2014-11-10T11:09:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-06-30Bitstream added on 2014-11-10T11:57:43Z : No. of bitstreams: 1
000790139.pdf: 2822695 bytes, checksum: 9777dea5ed40849ee6778f2f097212e3 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A elevada migração da população remanescente da zona rural para os grandes centros urbanos, nas últimas décadas, ocasionou uma maior produção de lixo, principalmente, os orgânicos de origem doméstica, alcançando os 55,5mi de toneladas em 2011. Considerando que aproximadamente 50% do lixo urbano no Brasil é composto de matéria orgânica, este poderia ser reaproveitado pelo processo de compostagem. A compostagem é a transformação do lixo orgânico em um produto relativamente estável e com baixa quantidade de matéria orgânica, que pode ser reaproveitado como adubo orgânico na agricultura ou como corretivo de solos degradados. Com base nessa problemática, foi proposto o presente trabalho cujo objetivo foi conhecer a microbiota fúngica das diferentes fases da compostagem, isola-los e reintroduzi-los no processo, buscando uma aceleração da biodegradação da matéria orgânica presente no lixo urbano, a fim de reduzir os custos de produção do composto orgânico, aumentar a aceitação da técnica como alternativa ambientalmente correta aos lixões à céu aberto e gerar uma diminuição na quantidade de resíduos encaminhada aos aterros sanitários. Em testes laboratoriais, o inóculo fúngico demonstrou melhorar o processo de compostagem, pela redução mais acelerada da matéria orgânica e diminuição da toxicidade do produto acabado, porém em testes em escala de pilhas o inóculo não apresentou grande variação em relação à compostagem tradicional, não degradando a matéria orgânica mais rapidamente, porém gerando diminuição acelerada da toxicidade / The high migration of the remaining population from rural to large urban centers in recent decades, has led to a greater production of waste, mainly organic, home-grown, reaching 55.5 mi tonnes in 2011. Whereas approximately 50% of urban waste in Brazil is composed of organic matter, this could be reused by the composting process. Composting is the transformation of organic waste into a relatively stable and low in organic matter product, which can be recycled as organic fertilizer in agriculture or as a corrective of degraded soils. Based on these problems, we proposed the present work aims to better understand the fungal microbiota of the different stages of composting, isolates them and reintroduce them in the process, seeking an accelerated biodegradation of organic matter in municipal waste in order to reduce production costs of organic compost, increase acceptance of the technique as an environmentally friendly alternative to open dumps and generate a decrease in the amount of waste sent to landfills. In laboratory tests, the fungal inoculum was shown to improve the composting process, the faster decline in organic matter and decrease in toxicity of the finished product, but in the pile sacale tests inoculum showed no great variation from the traditional composting, not degrading the organic matter faster, but generating accelerated decrease of toxicity
|
107 |
Produção de enzimas despolimerizantes de materal vegetal por fungos termofílicos usando suplemento comercial como substratoPirota, Rosangela Donizete Perpetura Buzon [UNESP] 05 March 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:21Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-03-05Bitstream added on 2014-06-13T19:35:19Z : No. of bitstreams: 1
pirota_rdpb_me_sjrp.pdf: 578843 bytes, checksum: cdb9880602dbf9a622dd6735c9072440 (MD5) / Muitos fungos decompositores de materiais lignocelulósicos vêm sendo utilizados como produtores de enzimas em processos fermentativos nos quais são utilizados substratos de baixo valor comercial, como os resíduos agrícolas e agroindustriais. No entanto, apenas uma pequena parte destes resíduos são utilizados na alimentação de animais de produção. O presente trabalho visou: 1) a obtenção de preparado enzimático termoestável, com alta atividade de xilanase, pectinase e celulases, a partir do cultivo de fungos filamentosos termofílicos por fermentação em estado sólido; 2) uso de suplemento mineral comercial como meio de cultivo para os fungos na fermentação sólida; 3) avaliar a estabilidade das enzimas frente às características do rúmen; 4) hidrólise enzimática. Os fungos Thermomyces lanuginosus, Thermomucor indicae-seudaticae e Rhizomucor pussilus escolhidos para essa finalidade, foram cultivadas a 45°C por 360 horas em fermentação em estado sólido (FES), utilizando-se como substratos, suplemento comercial (B) (Bellpeso SV* - composto de sais minerais, farelo de algodão e polpa cítrica e para efeitos de comparação farelo de algodão e polpa cítrica (35% e 65%) (A). A amostra foi retirada em 24h e todas as outras de 48h em 48h. A produção máxima de pectinase produzida pelo fungo T. indicae-seudaticae foi obtida em 168h (421,31U/g) no substrato A, e a máxima atividade de xilanase produzida pelo T. lanuginosus TO-03 e ROB foram de 644,30Ug e 865,15 U/g em 168h, respectivemente. A amilase foi produzida por todos os fungos, porém CMCase e Avicelase tiveram uma baixa produção e ligninases não foram detectadas. A temperatura e pH ótimo de pectinase produzida pelo fungo T. indicae-seudaticae foi de 55ºC e pH 4,5 e para xilanase produzida pelas duas linhagens de T. lanuginosus, em ambos os substratos foram 70ºC e pH ótimo 6,5, com exceção... / Many rot fungi of lignocellulosics material are being utilized as producers of enzymes in fermentation processes, in which, substrates of very little commercial value such as agricultural and agroindustrial residues are used. However, only a small portion of these residues are utilized in the production of animal feed. The present project proposes: 1) the attainment of prepared enzymatic thermostable, with high activity of xylanase, pectinase and cellulases, from the cultivation of filamentous thermophylic fungi from solid state fermentation; 2) the use of commercial mineral supplementation as medium of cultivation for the fungi in solid fermentation; 3) to evaluate the enzymes stability when facing the characteristics of the rumen; 4) enzymatic hydrolysis. Thermomyces lanuginosus, Thermomucor indicae-seudaticae and Rhizomucor pusillus fungi chosen for this purpose, were cultivated at 45°C, for 360 hours in solid state fermentation (SSF), utilizing as substrates, commercial supplement (Bellpeso SV* - composed of mineral salt, cotton meal and citrus pulp) (B) and for comparison purpose cotton meal and citrus pulp at 35% and 65% (A). The first sample was taken in 24hrs and all the others every 48hrs. The maximum production of pectinase produced by the fungus T. indicae-seudaticae was obtained in 168hrs (421.31U/g) in the commercial substrate A, and to maximum activity of xylanase produced by the T. lanuginosus TO-03 and ROB was of 644.30 U/g and 865.15 U/g in 168hrs, respectively. Amylase was produced by all of the fungi, however CMCase and Avycelase had a low production and ligninases was not detected. The optimun temperature and pH of pectinase produced by the fungus T. indicae-seudaticae were of 55ºC and pH 4.5 and for xylanase produced by the two lineages of T. lanuginosus, in both substrates were 70ºC and optimun pH 6.5, with the exception to ROB in the substrate B that presented... (Complete abstract click electronic access below)
|
108 |
Produção de poligalacturonases por fungos termofílicos e mesofílicos em fermentação em estado sólido e comparação das isoformas da enzima produzidas por cada grupoMonteiro, Alexandre Costa [UNESP] 25 April 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:23Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-04-25Bitstream added on 2014-06-13T20:08:23Z : No. of bitstreams: 1
monteiro_ac_me_rcla.pdf: 419901 bytes, checksum: 6e17ba68310913d5db3d8de5269a40dd (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / As pectinases são enzimas com importantes aplicações econômicas, especialmente na indústria alimentícia. Pectinases termoestáveis, produzidas por microrganismos termofílicos, apresentam uma série de características que favorecem sua aplicação em processos industriais, como, por exemplo, estabilidade em ampla faixa de pH e temperatura e maior tolerância a agentes químicos desnaturantes de proteínas. Contudo, os principais microrganismos empregados na produção de poligalacturonases (PGs) são fungos mesofílicos. O presente trabalho teve por objetivo realizar um estudo comparativo de produção de PGs em fermentação em estado sólido (FES) por fungos mesofílicos e termofílicos. Foram utilizados os fungos mesofílicos Aspergillus niger NRRL 3112 e Penicillium itallicum IZ 1584, reconhecidos como bons produtores de PGs, os termofílicos Thermomyces lanuginosus ROB e Rhizomucor pusillus A13.36 e o termodúrico Aspergillus fumigatus N31. Os microrganismos foram cultivados em FES em farelo de trigo, os mesofílicos a 27ºC e os demais a 45ºC, por períodos de 10 a 15 dias. Os maiores produtores de PG foram P. itallicum IZ 1584 (51U/g) e A. fumigatus N31 (59,40 U/g). As PGs dos fungos termofílicos apresentaram maiores valores de temperatura ótima e maior termoestabilidade que as dos mesofílicos. T. lanuginosus produziu PG com maior valor de temperatura ótima (70ºC). A. fumigatus produziu a PG mais termoestável, que conservou 100% da atividade original após 1 h de incubação a 50ºC em ausência de substrato. Cromatografias em filtração em gel e zimogramas revelaram a expressão de 7 isoformas de PG em A. niger NRRL 3112, 3 isoformas em P. itallicum IZ 1584, T. lanuginosus ROB e R. pusillus, e 2 isoformas em A. fumigatus N31. / Pectinases are enzymes with important economic applications, especially in food industry. Termostable pectinases, produced by termophilic microorganisms, display an array of characteristics that support their application in industrial processes, such as stability through a wide pH and temperature range, as well as higher tolerance to protein denaturating chemical agents. However, the major microoganisms employed in polygalacturonases (PGs) prodution are mesophilic fungi. The present work aimed to make a comparative study of PG production by mesophilic and thermophilc fungi in Solid-State Fermentation (SSF). The fungi employed were the mesophilic Aspergillus niger NRRL 3112 and Penicillium itallicum IZ 1584, both known as good PGs producers, the thermophilic Thermomyces lanuginosus ROB and Rhizomucor pusillus A13.36 and the termoduric Aspergillus fumigatus N31. The fungi were bred in wheat bran in SSF, the mesophilic at 27ºC and the others at 45ºC, during periods of 10 to 15 days. The higher PGs producers where P. itallicum IZ 1584 (51U/g) and A. fumigatus N31 (59,40 U/g). PGs of thermophilc fungi have shown higher values of optimum temperature and termostability than mesophilic PGs. T. lanuginosus produced PG with the higher value of optimum temperature for activity (70ºC). A. fumigatus have shown the most thermostable PG, which mantained 100% of its original activity after 1 h of incubation at 50ºC in absence of substrate. Gel filtration chromatography and zymograms revealed the expression of 7 PG isoforms for A. niger, 3 isoforms for P. itallicum IZ 1584, T. lanuginosus ROB and R. Pusillus, and 2 isoforms for A. fumigatus N31.
|
109 |
Produção de poligalacturonases por fungos termofílicos e mesofílicos em fermentação em estado sólido e comparação das isoformas da enzima produzidas por cada grupo /Monteiro, Alexandre Costa. January 2008 (has links)
Orientador: Eleni Gomes / Banca: Eleonora Cano Carmona / Banca: Hamilton Cabral / Resumo: As pectinases são enzimas com importantes aplicações econômicas, especialmente na indústria alimentícia. Pectinases termoestáveis, produzidas por microrganismos termofílicos, apresentam uma série de características que favorecem sua aplicação em processos industriais, como, por exemplo, estabilidade em ampla faixa de pH e temperatura e maior tolerância a agentes químicos desnaturantes de proteínas. Contudo, os principais microrganismos empregados na produção de poligalacturonases (PGs) são fungos mesofílicos. O presente trabalho teve por objetivo realizar um estudo comparativo de produção de PGs em fermentação em estado sólido (FES) por fungos mesofílicos e termofílicos. Foram utilizados os fungos mesofílicos Aspergillus niger NRRL 3112 e Penicillium itallicum IZ 1584, reconhecidos como bons produtores de PGs, os termofílicos Thermomyces lanuginosus ROB e Rhizomucor pusillus A13.36 e o termodúrico Aspergillus fumigatus N31. Os microrganismos foram cultivados em FES em farelo de trigo, os mesofílicos a 27ºC e os demais a 45ºC, por períodos de 10 a 15 dias. Os maiores produtores de PG foram P. itallicum IZ 1584 (51U/g) e A. fumigatus N31 (59,40 U/g). As PGs dos fungos termofílicos apresentaram maiores valores de temperatura ótima e maior termoestabilidade que as dos mesofílicos. T. lanuginosus produziu PG com maior valor de temperatura ótima (70ºC). A. fumigatus produziu a PG mais termoestável, que conservou 100% da atividade original após 1 h de incubação a 50ºC em ausência de substrato. Cromatografias em filtração em gel e zimogramas revelaram a expressão de 7 isoformas de PG em A. niger NRRL 3112, 3 isoformas em P. itallicum IZ 1584, T. lanuginosus ROB e R. pusillus, e 2 isoformas em A. fumigatus N31. / Abstract: Pectinases are enzymes with important economic applications, especially in food industry. Termostable pectinases, produced by termophilic microorganisms, display an array of characteristics that support their application in industrial processes, such as stability through a wide pH and temperature range, as well as higher tolerance to protein denaturating chemical agents. However, the major microoganisms employed in polygalacturonases (PGs) prodution are mesophilic fungi. The present work aimed to make a comparative study of PG production by mesophilic and thermophilc fungi in Solid-State Fermentation (SSF). The fungi employed were the mesophilic Aspergillus niger NRRL 3112 and Penicillium itallicum IZ 1584, both known as good PGs producers, the thermophilic Thermomyces lanuginosus ROB and Rhizomucor pusillus A13.36 and the termoduric Aspergillus fumigatus N31. The fungi were bred in wheat bran in SSF, the mesophilic at 27ºC and the others at 45ºC, during periods of 10 to 15 days. The higher PGs producers where P. itallicum IZ 1584 (51U/g) and A. fumigatus N31 (59,40 U/g). PGs of thermophilc fungi have shown higher values of optimum temperature and termostability than mesophilic PGs. T. lanuginosus produced PG with the higher value of optimum temperature for activity (70ºC). A. fumigatus have shown the most thermostable PG, which mantained 100% of its original activity after 1 h of incubation at 50ºC in absence of substrate. Gel filtration chromatography and zymograms revealed the expression of 7 PG isoforms for A. niger, 3 isoforms for P. itallicum IZ 1584, T. lanuginosus ROB and R. Pusillus, and 2 isoforms for A. fumigatus N31. / Mestre
|
110 |
Compostagem termofílica de lodo de esgoto: higienização e produção de biossólido para uso agrícola / Thermophilic composting of sewage sludge: hygienization and production of biosolids for agricultural useThiago de Almeida Leite 09 September 2015 (has links)
O presente trabalho teve como objetivo principal acompanhar o tratamento do lodo de esgoto gerado na estação de tratamento de esgotos de Jundiaí através da compostagem termofílica em leiras revolvidas mecanicamente sob a perspectiva da higienização e produção de biossólido para uso agrícola, em conformidade com o arcabouço legal existente. Foram monitorados nove lotes de esgoto, entre janeiro e dezembro de 2014. O tempo de acompanhamento de cada lote variou de 64 a 124 dias, com realização de coletas somente após o fim do tratamento, com exceção da temperatura que foi monitorada durante toda a fase termofílica do processo. Os seguintes parâmetros físico químicos foram considerados: temperatura, pH, umidade, sólidos totais e orgânicos, carbono orgânico, nitrogênio, relação C/N, capacidade de troca catiônica CTC, metais pesados e nutrientes. Por sua vez, as variáveis microbiológicas acompanhadas foram: coliformes termotolerantes, Salmonella sp. e ovos de helmintos. Os resultados das análises laboratoriais evidenciaram nítido decaimento microbiano após a compostagem termofílica. Ausência de salmonela já no lodo bruto, remoção total de coliformes termotolerantes e valores abaixo do limite estabelecido pela Resolução CONAMA 375/2006 e instruções normativas do Ministério da Agricultura, com redução média de 80,2 por cento , no que se refere a presença de ovos viáveis de helmintos. O sistema de compostagem também demonstrou capacidade de degradar e estabilizar a matéria orgânica, registrando relação C/N média de 13,70 ao fim dos tratamentos. Mesmo recebendo contribuição industrial, os metais pesados analisados Ar, Ba, Cr, Cd, Cu, Hg, Mo, Ni, Pb, Se e o Zn estiveram dentro dos limites estabelecidos pela legislação, inclusive na torta de lodo, excetuando Cd e o Ni. Significativa capacidade de troca catiônica média (315,44mmol/kg) e pH médio elevado (9,0) registrados no biossólido podem ter contribuído para a diminuição da concentração destes elementos no produto final. Os resultados também sugerem a disponibilidade de nutrientes (Ca, K, Mg, P e S) às plantas quando da prática do uso de biossólido na agricultura, com incrementos nos valores de Ca, K e Mg no produto final. / The present study aimed to monitor the treatment of the generated sewage sludge treatment plant in Jundiaí sewage through thermophilic composting in windrows mechanically plowed from the perspective of disinfection and production of biosolid for agricultural use, in accordance with the legal framework existing. Nine lots of sewage were monitored between January and December 2014. The monitoring period of time of each lot varied from 64 to 124, with sampling only after the end of treatment, except the temperature was monitored throughout the phase thermophilic process. The following physical-chemical parameters were considered: temperature, pH, moisture, total and organic solids, organic carbon, nitrogen, C/N, cation exchange capacity - CTC, heavy metals and nutrients. In turn, the microbiological variables were monitored: thermotolerants coliforms, Salmonella sp. and helminth eggs. The results of laboratory analyzes showed sharp microbial decay after the thermophilic composting. Salmonella absence already raw sludge, total removal of fecal coliforms and values below the limit established by CONAMA Resolution 375/2006 and regulatory instructions of the Ministry of Agriculture, with an average reduction of 80.2 per cent in relation to the presence of viable helminth eggs. The composting system has also demonstrated ability to degrade and stabilize organic material, recording C/N ratio average of 13.70 after the treatment. Even getting business tax, heavy metals analyzed Ar, Ba, Cr, Cd, Cu, Hg, Mo, Ni, Pb, Se and Zn were within the limits set by the legislation, including the dewatered sludge, except for Cd and Ni . Significant capacity cation exchange medium (315,44mmol / kg) and high average pH (9.0) recorded in biosolids may have contributed to the decrease in concentration of these elements in the final product. The results also suggest availability of nutrients (Ca, K, Mg, P, and S) to plants when using sewage sludge in agriculture, with increments the values Ca, K and Mg in the final product.
|
Page generated in 0.0745 seconds