1 |
Thermophysical and Mechanical Properties of Polymer Liquid Crystals and Their BlendsLópez, Betty Lucy 05 1900 (has links)
Tensile properties, namely the elastic modulus, tensile strength, percent of elongation at yield and at the break were determined for the pure components and blends. The results are connected to the respective phase diagrams and demonstrate that blending makes property manipulation possible. Blends for which the mechanical properties are better than those of pure EPs can be obtained.
|
2 |
Avaliação do congelamento de solução modelo por condutividade termica / Freezing evaluation of model solution by thermal conductivityMonzon Davila, Lena Soledad 31 July 2007 (has links)
Orientador: Vivaldo Silveira Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-08T21:44:28Z (GMT). No. of bitstreams: 1
MonzonDavila_LenaSoledad_M.pdf: 1297499 bytes, checksum: 0150b5616aa8630cf25a2830c9e27b00 (MD5)
Previous issue date: 2007 / Resumo: As propriedades termofisicas dos alimentos são requeridas para o cálculo de tempo de processamento em projetos de equipamentos para a indústria de alimentos. Os processos de congelamento exigem dados precisos das propriedades térmicas do produto, tais como condutividade térmica, fração de gelo, calor específico e entalpia. A necessidade do conhecimento do comportamento destas propriedades tem levado ao desenvolvimento de alguns modelos matemáticos para suas predições. A condutividade térmica dos alimentos é uma propriedade fortemente dependente da composição química e da temperatura do alimento. Neste trabalho compararam-se os resultados experimentais de condutividade térmica de soluções modelo congeladas em três diferentes velocidades de congelamento, utilizando o método da sonda linear de aquecimento, com os obtidos pelo modelo matemático ¿Maxwell-Eucken¿ ou disperso como função da fração de gelo contida nos alimentos. Foi obtida uma divergência com o modelo por não considerar a velocidade de congelamento. Determinou-se que a condutividade térmica é uma propriedade termofísica diretamente proporcional ao aumento da velocidade de congelamento Os valores de condutividade térmica das amostras foram calculados através da inclinação obtida da regressão linear determinada pelo perfil do logaritmo natural do tempo versus temperatura. Os resultados da condutividade térmica foram correlacionados com as velocidades de congelamento e com a fração de gelo, indicando sua dependência devido à dispersão do gelo no produto / Abstract: The thermophysical properties of foods are required to calculate freezing time in the equipments design for foods industry. Freezing process demand exacts data of product thermal properties, as thermal conductivity, ice fraction, specific heat and enthalpy. The necessity of knowledge of the behavior of these properties has led to development of some mathematical models for their prediction. Thermal conductivity of foods is a property strongly dependent of chemical composition and food temperature. In this work, the experimental thermal conductivity results of model solutions freezing in three different velocities using line source probe method have been compared with the results obtained by the Maxwell-Eucken mathematical model or disperse as a function of ice fraction contained in foods, getting a divergence of the model for not considerer freezing velocities. Model solutions were frozen in three different velocities of freezing. Was determined that the thermal conductivity is a thermophysical property directly proportional to the increase of the freezing velocity. The thermal conductivity values of samples were calculated by the angular coefficient obtained by the linear regression which was determinate by the time natural logarithmic profile versus temperature. The thermal conductivity results were correlated with freezing velocities and ice fraction, indicating its dependence due to ice dispersion in the product / Mestrado / Mestre em Engenharia de Alimentos
|
3 |
Molecular Dynamics Simulation of transport and structural properties of molten reactor saltsRenganathan, Ananthi 04 October 2021 (has links)
No description available.
|
4 |
Determination of Temperature-dependent Thermophysical Properties during Rapid Solidification of Metallic AlloysBasily, Remon January 2024 (has links)
Recent global efforts have focused on developing new lightweight alloys specifically designed for high-pressure die casting (HPDC) processes, aiming to achieve the lightweight of electrified vehicles. HPDC offers a distinct advantage by allowing the production of neat-net-shape automotive components, minimizing the need for further processing. An inherent characteristic of HPDC is its rapid cooling rates, making the understanding and characterization of the thermophysical properties of these newly developed lightweight alloys under high cooling rates a must. These properties have a significant effect on controlling the HPDC process and developing suitable filling and solidification models to simulate the HPDC process intricacies for commercial production adaptation. The thermophysical properties of these alloys are shown to exhibit considerable variability with temperature, particularly under rapid solidification conditions, like in HPDC. Hence, an essential step in developing such alloys is to thoroughly investigate the variation of their thermophysical properties with temperature under high cooling rates.
To fulfill such a need, an experimental setup has been developed to allow the solidification of molten metal samples under varying cooling rates using a set of impinging water jets. An inverse heat transfer algorithm has been developed to estimate the thermal conductivity and thermal diffusivity as a function of the temperature of the solidifying samples under high cooling rates.
To validate the accuracy of the inverse heat transfer algorithm and the experimental methodology, a set of experiments has been carried out using pure Tin, which is a well-characterized material. Its thermal diffusivity and thermal conductivity are readily available in the literature. The estimated thermal diffusivity and thermal conductivity of Tin have been compared with the published data. The estimated thermal diffusivity and conductivity of the solid phase were in good agreement with the published values. A maximum deviation ranging from +10.1% to -3.47% was observed in the estimated thermal diffusivity. The maximum deviation in the estimated thermal conductivity was between +7.8% and -13.6%. Higher deviations have been observed in the estimated thermal diffusivity and conductivity of the liquid phase with deviations in the range of +33.71% to -4.86% and +0.76% to 26.53%, respectively. The higher deviations observed for the liquid phase might be attributed due to the natural convection that developed in the tested liquid sample. The effect of natural convection was examined using a set of numerical simulations that confirmed the existence of a convection-induced movement within the liquid phase.
A sensitivity analysis was carried out to examine the impact of the accuracy of thermocouple positions and the effect of temperature sensing accuracy on the estimated thermal properties. / Thesis / Master of Applied Science (MASc) / An inverse heat transfer algorithm along with an experimental setup has been developed to estimate the temperature-dependant thermophysical properties during solidification of metallic alloys under high cooling rates. To verify the accuracy of the developed algorithm and the experimental setup the estimated thermal conductivity and diffusivity of pure Tin have been compared with data available in the literature. The results showed reasonable agreement.
|
5 |
Caractérisation thermophysique multiéchelles par radiométrie photothermique basses et hautes fréquences / Multiscale thermophysical characterization using broad frequency range photothermal radiometryHamaoui, Georges 18 October 2018 (has links)
Les problèmes liés au réchauffement climatique, conséquences de la production d'énergie et de la pollution, rendent ce thème de recherche un des plus importants du moment. La course pour trouver de nouveaux matériaux pour mettre au point des applications innovantes est à son apogée, et de grands progrès voient le jour dans chaque domaine de recherche. Par exemple, les chercheurs en physique se concentrent sur la fabrication de matériaux ou de couples de matériaux avec des propriétés électriques/thermiques supérieures pour améliorer les systèmes électroniques aux échelles nano- et micro- métriques. Certains de ces éléments sont formés de couches simples, de multicouches ou de membranes. Ainsi, des techniques expérimentales appropriées sont essentielles pour mesurer les propriétés thermophysiques de ces nouveaux composants. Dans cette thèse, la caractérisation thermique de diverses sortes de matériaux est réalisée en utilisant une technique de radiométrie photothermique (PTR). PTR est une méthode sans contact dans laquelle la réponse thermique de matériaux induite par rayonnement est mesurée. Deux types de configurations ont été utilisées, la première avec une modulation dans le domaine fréquentiel jusqu'à 10 MHz et l’autre avec une modulation hybride fréquence/spatial jusqu'à 2 MHz avec ~ 30 µm de résolution. Avec ces méthodes, il est possible d'extraire indépendamment des paramètres thermophysiques comme la diffusivité thermique, l’effusivité thermique ou la résistance de Kapitza. Ces deux configurations sont utilisées pour caractériser thermiquement des combinaisons particulières de matériaux comme des nanocomposites, des couches minces organiques, des matériaux irradiés, des matériaux à changement de phase ou les résistances thermiques à l’interfaces métal/semiconducteur. Les résultats obtenus donnent de nouvelles pistes de recherche sur le transport thermique et la gestion de la chaleur à l’échelle nanométrique. / The recognition of problems connected to the global warming linked to energy production and pollution, makes it the most important research topic of the moment. The race of finding new materials for improved applications is at its peak, while big advancements in technologies within each field of research have seen the light. For example, researchers in physics are focusing on making superior materials or couple of materials with enhanced thermo-/electric- physical properties for nano- and micro- electronic devices. The constituents in question, embody simple or complicated multiscale layers or membranes. Thus, proper experimental techniques are essential to measure the thermophysical properties of these new components. In this thesis, thermal characterization of diverse kinds of materials is made using a photothermal radiometry (PTR) technique. PTR is a contactless method which measures the thermal response of materials induced by optical heating. Two types of PTR setups were utilized, one using frequency domain modulation up to 10 MHz and one based upon hybrid frequency/spatial domain modulation up to 2 MHz with ~30 µm resolution. With these methods, it is possible to extract independent thermophysical parameters like the thermal diffusivity, thermal effusivity or Kapitza resistance. These two setups are used jointly to thermally characterize peculiar combinations of materials like: nanocomposite, organic, irradiated, phase changing and silicide materials. The results grasp new insights on the thermal transport and heat management across these set of materials and encourages novel ways to apply them in diverse applications throughout many research fields.
|
6 |
Heat and Mass Transfer in Baled Switchgrass for Storage and Bioconversion ApplicationsSchiavone, Drew F. 01 January 2016 (has links)
The temperature and moisture content of biomass feedstocks both play a critical role in minimizing storage and transportation costs, achieving effective bioconversion, and developing relevant postharvest quality models. Hence, this study characterizes the heat and mass transfer occurring within baled switchgrass through the development of a mathematical model describing the relevant thermal and physical properties of this specific substrate. This mathematical model accounts for the effect of internal heat generation and temperature-induced free convection within the material in order to improve prediction accuracy. Inclusion of these terms is considered novel in terms of similar biomass models.
Two disparate length scales, characterizing both the overall bale structure (global domain) and the individual stems (local domain), are considered with different physical processes occurring on each scale. Material and fluid properties were based on the results of hydraulic conductivity experiments, moisture measurements and thermal analyses that were performed using the constant head method, TDR-based sensors and dual thermal probes, respectively. The unique contributions made by each of these components are also discussed in terms of their particular application within various storage and bioconversion operations.
Model validation was performed with rectangular bales of switchgrass (102 x 46 x 36 cm3) stored in an environmental chamber with and without partial insulation to control directional heat transfer. Bale temperatures generally exhibited the same trend as ambient air; although initial periods of microbial growth and heat generation were observed. Moisture content uniformly declined during storage, thereby contributing to minimal heat generation in the latter phases of storage.
The mathematical model agreed closely with experimental data for low moisture content levels in terms of describing the temperature and moisture distribution within the material. The inclusion of internal heat generation was found to be necessary for improving the prediction accuracy of the model; particularly in the initial stage of storage. However, the effects of natural convection exhibited minimal contribution to the heat transfer as conduction was observed as the predominate mechanism occurring throughout storage. The results of this study and the newly developed model are expected to enable the maintenance of baled biomass quality during storage and/or high-solids bioconversion.
|
7 |
Analyse du transfert de chaleur dans les matériaux composites à changement de phase (MCP) / Analyzis of heat transfer and thermophysical properties of composite materials (PCM)Trigui, Abdelwaheb 14 February 2013 (has links)
A l'heure où chacun débat sur la protection de l'environnement et les diminutions de la consommation énergétique, de nouveaux matériaux apparaissent sur le marché. Les matériaux à changement de phase (MCP) présentent un avantage et une technologie qui serait avantageuse tant sur le plan écologique qu'économique. Ils peuvent apporter des avantages compétitifs (baisse de la consommation d'énergie, gain du confort dans la vie sociale, refroidissement de packaging électronique….etc). Les enjeux écologiques mondiaux donnent plus de légitimité et intérêt à l'utilisation des matériaux à changement de phase (MCP) dans plusieurs domaines (les biomatériaux, le bâtiment, les semi-conducteurs, composites…). Ce travail vise à mettre au point l'intégration de Matériaux à Changement de Phase (MCP) encapsulés/ou non encapsulés dans une matrice de polymère renforcée par des charges conductrices/ou non conductrices. La matrice peut être un thermoplastique ou un thermodurcissable. Le but est d'augmenter la conductivité effective et la vitesse de stockage/restitution de l'énergie sous forme de chaleur latente. La maîtrise du comportement thermique de ces matériaux passe par l'analyse fine de leurs propriétés thermophysiques. Il est donc indispensable de disposer d'outils expérimentaux adaptés pour caractériser ces matériaux. Nous avons donc fabriqué des échantillons « MCP » et conçu une plaque chaude gardée transitoire (PCGT), instrumentée de capteurs de température et de flux placés sur les deux faces de l'échantillon pour qu'ils soient sensibles aux variations des conditions aux limites thermiques contrôlées. La réponse thermique de ces échantillons à un cycle thermique de stockage-déstockage est présentée puis analysée. Les paramètres mesurés sont les conductivités thermiques et les chaleurs massiques dans les états solides et liquides, la température et la chaleur latente de changement de phase. Ces mesures fluxmétriques sont une source de données expérimentales très intéressante qui viennent compléter nos mesures calorimétriques de DSC / Pas de résumé en anglais
|
8 |
Contribution à la caractérisation thermophysique de matériaux bio-isolants : valorisation des déchets de bois de palmier / Thermo-physical caracterisation of bio-insulated materials : application to wood palmTlijani, Mohamed 06 December 2016 (has links)
Ce travail s’inscrit dans un contexte favorable au développement de nouveaux bétons dans le domaine du génie civil. Il consiste en la mise au point et la caractérisation d un béton renforcé de fibres obtenues à partir des déchets de bois de palmiers dattiers. Une première partie est consacrée à l’étude expérimentale des propriétés thermophysiques des fibres naturelles du palmier dattier. On montre que les facteurs essentiels affectant la conductivité thermique sont la variété du palmier dattier et l’orientation des fibres et que le bois de pétiole de palme est la partie la plus intéressante en tant qu’isolant thermique. les fibres végétales du bois de pétiole constituent, donc une alternative intéressante aux fibres inorganiques et synthétiques .Afin de remédier aux problèmes de stabilité dimensionnelle et de dégradation, on optimise la concentration du prétraitement alcalin nécessaire pour nettoyer et modifier la surface des fibres. Les effets du traitement sont étudiés au moyen d’un microscope électronique à balayage. Les conséquences sur les propriétés mécaniques du traitement alcalin sont également mises en évidence. L’analyse des résultats conduit à choisir une concentration optimale de 0,75 % pour l’hydroxyde de sodium.On s’intéresse ensuite au comportement du matériau composite obtenu à partir de chaux et de fibres de bois de palmier. On propose une démarche expérimentale et théorique originale sur la conductivité thermique, basée sur l’homogénéisation, de différentes formulations du béton de bois de pétiole de palmier ainsi que sur l’influence de la porosité. Finalement ce béton présente d’excellentes performances de point de vue isolation thermique.Finalement, on a procédé à une simulation numérique des phénomènes de transfert de chaleur au sein du béton de pétiole afin de valider le modèle de prédiction théorique choisi. nous avons, en effet refléchi à un modèle numérique inspiré de la modélisation théorique auto-cohérente (HAC) pour prédire la conductivité thermique numérique, basé sur des sphères concentriques d’air et de bois de pétiole occupant le centre de la matrice chaux, afin de balayer numériquement toutes les possibilites de dispositions de charges dans le composite. La dernière partie propose une validation des résultats expérimentaux obtenus à partir du développement d’un modèle tridimensionnel / The growing interest in new concrete and their use in many fields of civil engineering was that we wanted to bring a new approach to the design of a new product consisting of a reinforced concrete with basel end frond palm fibers. This led us to conduct the experimental study of thermal properties of natural fibers of date palm (Phoenix dactylifera L.). The analysis of experimental results showed that the essential factors affecting the thermal conductivity are the variety of date palm and the fiber orientation and that the basel end of the frond palm is the most interesting part as thermal insulation. However, the main problem encountered when using plant fibers as reinforcement is cohesion, bonding with the matrix and dimensional instability so the composite loses its mechanical properties. In this context, an alkaline pretreatment of palm fibers was envisaged to clean and modify the fiber surface to address the problems of dimensional stability of the fibers and degradation before their use as reinforcement in the cement matrix. We also studied the influence of chemical treatment with sodium hydroxide on the mechanical properties of processed samples, they were subjected to the tensile test to estimate the fracture strength for each treatment concentration, the Young's modulus and elongation at break corresponding. Subsequently, we conducted experimental and theoretical research on the thermal conductivity of different formulations of basel end palm wood concrete composite. The study of the theoretical apparent thermal conductivity was based on an approach that relies on a process whereas the material consists of a solid matrix combined with a fluid phase (air). Finally, we performed a numerical simulation of heat transfer phenomena to assess the thermal conductivity of basel end frond palm concrete composite and validate subsequently the theoretical prediction model selected. The results showed that the numerical approach based on the isotropic orientation of the particles in the composite coincides and approaches the physical reality
|
9 |
How a Systematic Approach to Uncertainty Quantification Renders Molecular Simulation a Quantitative Tool in Predicting the Critical Constants for Large <em>n</em>-AlkanesMesserly, Richard Alma 01 December 2016 (has links)
Accurate thermophysical property data are crucial for designing efficient chemical processes. For this reason, the Design Institute for Physical Properties (DIPPR 801) provides evaluated experimental data and prediction of various thermophysical properties. The critical temperature (Tc), critical density (ρc), critical pressure (Pc), critical compressibility factor (Zc), and normal boiling point (Tb) are important constants to check for thermodynamic consistency and to estimate other properties. The n-alkane family is of primary interest because it is generally assumed that other families of compounds behave similarly to the n-alkane family with increasing chain-length. Unfortunately, due to thermal decomposition, experimental measurements of Tc, ρc, and Pc for large n-alkanes are scarce and potentially unreliable. For this reason, molecular simulation is an attractive alternative for estimating the critical constants. However, molecular simulation has often been viewed as a tool that is limited to providing qualitative insight. One key reason for this perceived weakness is the difficulty in quantifying the uncertainty of the simulation results. This research focuses on a systematic top-down approach to quantifying the uncertainty in Gibbs Ensemble Monte Carlo (GEMC) simulations for large n-alkanes. We implemented four different methods in order to obtain quantitatively reliable molecular simulation results. First, we followed a rigorous statistical analysis to assign the uncertainty of the critical constants when obtained from GEMC. Second, we developed an improved method for predicting Pc with the standard force field models in the literature. Third, we implemented an experimental design to reduce the uncertainty associated with Tc, ρc, Pc, and Zc. Finally, we quantified the uncertainty associated with the Lennard-Jones 12-6 potential parameters. This research demonstrates how uncertainty quantification renders molecular simulation a quantitative tool for thermophysical property evaluation. Specifically, by quantifying and reducing the uncertainty associated with molecular simulation results, we were able to discern between different experimental data sets and prediction models for the critical constants. In this regard, our results enabled the development of improved prediction models for Tc, ρc, Pc, and Zc for large n-alkanes. In addition, we developed a new Tb prediction model in order to ensure thermodynamic consistency between Tc, Pc, and Tb.
|
10 |
Analysis of Beef Steaks of Varying USDA Quality Grades and Thicknesses Cooked on Low and High Grill Surface TemperaturesGardner, ToniRae 01 May 2017 (has links)
The objective of this project was to analyze the thermodynamics (thermal conductivity and diffusivity as well as protein denaturation) and physical properties (percent expressible moisture, cooking loss, change in steak thickness, shear force, texture profile analysis and rheological behavior) of beef steaks of different USDA quality grades (Upper 2/3 Choice and Select), thicknesses (thick and thin), and grill surface temperatures (high and low) cooked to the same internal degree of doneness to determine if a specific set of cooking parameters would create a profound difference in the eating characteristics, described by the tenderness and juiciness of cooked beef strip steaks.
The elastic behavior of the surface and centers of beef steaks were analyzed to determine how the microstructure of the beef responded to applied stress. The elastic behavior of steak centers was influenced in a three-way interaction between USDA Quality Grade, steak thickness, and grill surface temperature while the elastic behavior of the surface of steaks was influenced only by USDA Quality Grade and steak thickness. These interactions along with the differences in the thermal characteristic of proteins suggest that the microstructure of beef steaks is significantly affected by each cooking treatment group. The physical properties in the beef steaks further support through more tangible applications that the composition, thickness, and cooking regiments impact the microstructure and thermal properties of beef and thus final tenderness and texture.
This project identified cooking preparation should take into consideration that quality grade, thickness and cooking temperature will affect the textural eating qualities of beef steaks. Choice steaks were shown to be ideally sliced thick and cooked on a low grill surface temperature supported by the springiness, hardness, expressible moisture, and rheological data. Select steaks were not always effected by grill surface temperature and had similar results among the different measurements but the hardness, resilience and chewiness values along with viscosity suggest a thick steak cooked at a high grill surface temperature. Therefore, cooking parameters may be utilized as a mechanism to enhance beef steak palatability.
|
Page generated in 0.0719 seconds