• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pyrométrie et caractérisation thermophysique par radiométrie photothermique non linéaire / Nonlinear Photothermal Radiometry and its applications to pyrometry and thermal property measurements

Fleming, Austin 19 May 2017 (has links)
La radiométrie photothermique (PTR) est une technique standard qui mesure les propriétés thermiques en mesurant la réponse thermique d’un matériau à un échauffement optique. Le travail présenté ici développe la théorie PTR en prenant en compte la dépendance non linéaire des émissions thermiques par rapport à la température. Cette théorie PTR est explorée numériquement et expérimentalement dans ce travail en utilisant la dépendance non linéaire du rayonnement thermique en fonction de la température. Une technique de mesure de l'effusivité thermique et deux nouvelles techniques de pyrométrie sont développées et testées expérimentalement. La première technique de pyrométrie permet une mesure précise de l’augmentation de température lors d'une mesure PTR traditionnelle. Cela a de nombreuses applications lorsque l'échantillon est sensible à l’augmentation de température et peut être endommagé en raison d’une surchauffe. La deuxième technique de pyrométrie ne nécessite pas que l’émissivité soit connue, mesurée ou d’être basée sur l’hypothèse d’un corps gris. Cependant la mesure peut être fortement influencée par une erreur sur la bande passante des filtres optiques utilisés et elle est très sensible à toute non-linéarité dans le système de détection. À partir des résultats expérimentaux, des directives de conception sont fournies pour minimiser ces deux inconvénients. La troisième méthode développée permet une mesure directe et sans contact de l'effusivité thermique d'un matériau homogène. Ce type de mesure n'a encore jamais été réalisé avec d'autres techniques. Les résultats expérimentaux d'effusivité de cette technique montrent un excellent accord avec les valeurs de la littérature. / Photothermal radiometry (PTR) is a standard technique which measures thermal properties by measuring a materials thermal response due to optical heating. PTR measures the emitted thermal radiation from a sample to determine the thermal response. The work presented here further develops the PTR theory by including the nonlinear dependence of thermal emission with respect to temperature. This more advanced PTR theory is numerically and experimentally explored in this work. A thermal effusivity measurement technique and two new pyrometry techniques are developed and experimentally tested using the nonlinear dependence in the PTR theory. The first pyrometry technique allows for accurate temperature measurement during a traditional PTR measurement. This has many applications when the sample is sensitive to an increase in temperature and possibly damaged due to overheating. The second pyrometry technique does not require emissivity to be known, measured, or rely on a gray body assumption. The measurement can be influenced greatly by any error in the bandwidth of optical filters used in the measurement, and it is very sensitive to any nonlinearity in the detection system. From the experimental results, design guidelines are provided to minimize these two drawbacks of the technique for future exploration. The direct thermal effusivity measurement developed allows for a non-contact, direct measurement of thermal effusivity of a homogenous material. This type of measurement has not been achieved with any other technique. The experimental effusivity results from this technique show excellent agreement with literature values.
2

Rejoindre les nano et macro mondes : la mesure des propriétés thermiques utilisant la microscopie thermique et la radiométrie photothermique / Bridging the nano- and macro- worlds : thermal property measurement using scanning thermal microscopy and photothermal radiometry

Jensen, Colby 30 May 2014 (has links)
Dans les applications nucléaires, les propriétés des matériaux peuvent subir des modifications importantes en raison de l'interaction destructive avec l'irradiation de particules au niveau des microstructures, qui affectent les propriétés globales. L'un des défis associés aux études de matériaux irradiés par des ions, c'est que la couche concernée, ou la profondeur de pénétration, est généralement très mince (0,1-100 um). Cette étude élargit la base des connaissances actuelles en matière de transport thermique dans les matériaux irradiés par des ions, en utilisant une approche expérimentale multiéchelles avec des méthodes basées sur des ondes thermiques. D'une manière pas encore explorée auparavant, quatre méthodes sont utilisées pour caractériser la couche irradiée par des protons dans ZrC : la microscopie thermique à balayage (SThM), la radiométrie photothermique (PTR) avec détection sur la face avant et balayage spatial, la thermographie infrarouge lock-In (IRT), et la PTR tomographique avec balayage en fréquence. Pour la première fois, le profil de conductivité thermique en profondeur d'un échantillon irradié est mesuré directement. Les profils obtenus par chacune des méthodes d'analyse spatiale sont comparés les uns aux autres et à la prévision numérique du profil endommagé. La nature complémentaire des différentes techniques valide le profil mesuré et la dégradation constatée de la conductivité thermique de l'échantillon de ZrC. / In nuclear applications, material properties can undergo significant alteration due to destructive interaction with irradiating particles at microstructural levels that affect bulk properties. One of the challenges associated with studies of ion-Irradiated materials is that the affected layer, or penetration depth, is typically very thin (~0.1-100 μm). This study expands the current knowledge base regarding thermal transport in ion-Irradiated materials through the use of a multiscaled experimental approach using thermal wave methods. In a manner not previously explored, four thermal wave methods are used to characterize the proton-Irradiated layer in ZrC including scanning thermal microscopy (SThM), spatial-Scanning front-Detection photothermal radiometry (PTR), lock-In IR thermography (lock-In IRT), and tomographic, frequency-Based PTR. For the first time, the in-Depth thermal conductivity profile of an irradiated sample is measured directly. The profiles obtained by each of the spatial scanning methods are compared to each other and the numerical prediction of the ion-Damage profile. The complementary nature of the various techniques validates the measured profile and the measured degradation of thermal conductivity in the ZrC sample.
3

Caractérisation thermique à haute température de couches minces pour mémoires à changement de phase depuis l'état solide jusqu'à l'état liquide

Cappella, Andrea 14 March 2012 (has links)
Ces travaux de thèse portent sur la caractérisation thermique à l’échelle micrométrique d’un alliage à base de tellure lorsque ce matériau se trouve à l’état fondu, à haute température. À cette fin, une cellule innovante d’emprisonnement du matériau fondu a été conçue, et mise en place. Des structures de tellure au volume du microlitre ont été déposées sur un substrat de silicium et recouverts par la suite d’une couche de protection capable de les emprisonner dans une matrice : silice amorphe et alumine amorphe. La technique de la Radiométrie Photothermique Modulée a été utilisée pour étudier les propriétés thermiques de ce type de cellules et de ces constituants. La résistance thermique de dépôt a été ainsi estimée en utilisant un modèle d’étude des transferts de la chaleur utilisant le formalisme des impédances thermiques. Ceci nous a permit dans le cas de l’alumine amorphe de déterminer sa conductivité thermique et la résistance thermique de contact avec le substrat jusqu’à 600°C. Un long processus de conception, de mesure et d’analyse a été nécessaire afin d’obtenir une cellule capable de résister aux contraintes des hautes températures. À l’heure actuelle seule la caractérisation thermique jusqu’à 300°C a été possible à cause de l’instabilité mécanique de ce dépôt hétérogène. Ceci a été confirmé par des caractérisations physico-chimiques par techniques XRR, XRD et SEM. / This thesis is devoted to the thermal characterization of molten materials, namely chalcogenide glass-type tellurium alloys, at the micrometer scale. An experimental setup of Photothermal Radiometry (PTR), formerly developed for solid state measurements, has been adapted for this purpose. Using MOCVD technique, a random lattice of sub-micrometric tellurium alloy structures is grown on a thermally oxidized silicon substrate. These structures are then embedded in a protective layer (silica or alumina) to prevent evaporation during melting. Measurements are then performed from room temperature up to 650°C. SEM and XRD measurements performed after annealing show that these samples withstand thermal stress only up to 300°C. The coating’s thermal boundary resistance is estimated by a heat transfer model based on the thermal impedance formalism. Moreover, the thermal conductivity and thermal boundary resistance of thin amorphous alumina by low temperature ALD are measured from the room temperature to 600°C.
4

Caractérisation d’une mémoire à changement de phase : mesure de propriétés thermiques de couches minces à haute température

Schick, Vincent 21 June 2011 (has links)
Les mémoires à changement de phase (PRAM) développées par l’industrie de la microélectronique utilisent la capacité d’un materiau chalcogénure à passer rapidement et de façon réversible d’une phase amorphe à une phase cristalline. Le passage de la phase amorphe à la phase cristalline s’accompagne d’un changement de la résistance électrique du matériau. La transition amorphe vers cristallin est obtenue par un chauffage qui porte la cellule mémoires au delà de la température de transition du verre. Le verre ternaire de chalcogène Ge2Sb2Te5 (GST-225) est probablement le matériau amené à être le plus utilisé dans la prochaine génération de dispositifs de stockage de masse. La thermoréflectométrie résolue en temps (TDTR) et la radiométrie photothermique modulée (MPTR) sont utilisées ici pour étudier les propriétés thermiques des constituants des PRAM déposés sous forme de couche mince sur des substrats de silicium. Les diffusivités thermiques et les résistances thermiques de contact des films PRAM sont estimées. Ces paramètres sont identifiés en utilisant un modèle d’étude des transferts de chaleur basé sur la loi de Fourier et utilisant le formalisme des impédances thermiques. Ces mesures ont été effectuées pour des températures allant de 25 à 400°C. Les modifications de structure et de compositions chimiques causées par les hautes températures au cours des expériences sont aussi étudiées via des analyses par les techniques de DRX, MEB, TOF-SIMS et ellipsométrie.Les propriétés thermiques des GST - 225, isolants, électrodes de chauffage et électrodes métalliques mise en œuvre dans ce type de dispositif de stockage sont ainsi mesuré a l’échelle submicrométrique. / The Phase change Random Access Memories (PRAM), developed by semiconductor industry are based on rapid and reversible change from amorphous to crystalline stable phase of chalcogenide materials. The switching between the amorphous and the crystalline phase leads to change of the electrical resistance of material. The amorphous-to-crystalline transition is performed by heating the memory cell above the glass transition temperature (~130°C). The chalcogenide ternary compound glass Ge2Sb2Te5 (GST-225) is probably the candidate to become the most exploited material in the next generation of mass storage architectures. The Time Domain ThermoReflectance (TDTR) and the Modulated PhotoThermal Radiometry (MPTR) have been implemented to study the thermal properties of constituting element of PRAM deposited as thin layer (~100 nm) on silicon substrate. The thermal diffusivity and the Thermal Boundary Resistance of the PRAM film are retrieved. These parameters are identified using a model of heat transfer based on Fourier’s Law and the thermal impedance formalism. The measurements were performed in function of temperature from 25°C to 400°C. Structural and chemical changes due to the high temperature during the experimentation have been also investigated by using XRD, SEM, TOF-SIMS and ellipsometry techniques. The thermal properties of GST-225, insulator, heating and metallic electrode involved in these kind of storage devices were thus measured at a sub micrometric scale.
5

Caractérisation thermophysique multiéchelles par radiométrie photothermique basses et hautes fréquences / Multiscale thermophysical characterization using broad frequency range photothermal radiometry

Hamaoui, Georges 18 October 2018 (has links)
Les problèmes liés au réchauffement climatique, conséquences de la production d'énergie et de la pollution, rendent ce thème de recherche un des plus importants du moment. La course pour trouver de nouveaux matériaux pour mettre au point des applications innovantes est à son apogée, et de grands progrès voient le jour dans chaque domaine de recherche. Par exemple, les chercheurs en physique se concentrent sur la fabrication de matériaux ou de couples de matériaux avec des propriétés électriques/thermiques supérieures pour améliorer les systèmes électroniques aux échelles nano- et micro- métriques. Certains de ces éléments sont formés de couches simples, de multicouches ou de membranes. Ainsi, des techniques expérimentales appropriées sont essentielles pour mesurer les propriétés thermophysiques de ces nouveaux composants. Dans cette thèse, la caractérisation thermique de diverses sortes de matériaux est réalisée en utilisant une technique de radiométrie photothermique (PTR). PTR est une méthode sans contact dans laquelle la réponse thermique de matériaux induite par rayonnement est mesurée. Deux types de configurations ont été utilisées, la première avec une modulation dans le domaine fréquentiel jusqu'à 10 MHz et l’autre avec une modulation hybride fréquence/spatial jusqu'à 2 MHz avec ~ 30 µm de résolution. Avec ces méthodes, il est possible d'extraire indépendamment des paramètres thermophysiques comme la diffusivité thermique, l’effusivité thermique ou la résistance de Kapitza. Ces deux configurations sont utilisées pour caractériser thermiquement des combinaisons particulières de matériaux comme des nanocomposites, des couches minces organiques, des matériaux irradiés, des matériaux à changement de phase ou les résistances thermiques à l’interfaces métal/semiconducteur. Les résultats obtenus donnent de nouvelles pistes de recherche sur le transport thermique et la gestion de la chaleur à l’échelle nanométrique. / The recognition of problems connected to the global warming linked to energy production and pollution, makes it the most important research topic of the moment. The race of finding new materials for improved applications is at its peak, while big advancements in technologies within each field of research have seen the light. For example, researchers in physics are focusing on making superior materials or couple of materials with enhanced thermo-/electric- physical properties for nano- and micro- electronic devices. The constituents in question, embody simple or complicated multiscale layers or membranes. Thus, proper experimental techniques are essential to measure the thermophysical properties of these new components. In this thesis, thermal characterization of diverse kinds of materials is made using a photothermal radiometry (PTR) technique. PTR is a contactless method which measures the thermal response of materials induced by optical heating. Two types of PTR setups were utilized, one using frequency domain modulation up to 10 MHz and one based upon hybrid frequency/spatial domain modulation up to 2 MHz with ~30 µm resolution. With these methods, it is possible to extract independent thermophysical parameters like the thermal diffusivity, thermal effusivity or Kapitza resistance. These two setups are used jointly to thermally characterize peculiar combinations of materials like: nanocomposite, organic, irradiated, phase changing and silicide materials. The results grasp new insights on the thermal transport and heat management across these set of materials and encourages novel ways to apply them in diverse applications throughout many research fields.
6

Caractérisation des propriétés d’un matériau par radiométrie photothermique modulée / Characterization of the properties of a material by modulated photothermal radiometry

Pham Tu Quoc, Sang 05 December 2014 (has links)
L'objectif de nos études est d’appliquer la technique de radiométrie photothermique modulée, technique non intrusive et applicable à distance, pour d’une part, mesurer l'épaisseur et la diffusivité thermique d'une plaque, et d’autre part, caractériser une couche sur un substrat. Un modèle thermique du chauffage 3D a été développé avec prise en compte de l’échange thermique par convection dans le cas d'une plaque, et de la résistance thermique de l'interface dans le cas d'une couche sur un substrat. Une analyse de sensibilité des paramètres sur le déphasage et des études multiparamétriques ont été réalisées à l'aide d'un code de calcul développé sous Matlab. Des formules simples ont ainsi été déterminées pour mesurer l'épaisseur et la diffusivité thermique d'une plaque ainsi que le rapport des effusivités thermiques dans le cas d'une couche sur un substrat. Les formules établies pour les plaques ont été validées expérimentalement sur des plaques d’épaisseur variant de 100μm à 500μm pour différents métaux : inox 304L, nickel, titane, tungstène, molybdène, zinc et fer. L’incertitude de ces déterminations est inférieure à 10% pour l'épaisseur et inférieure à 15% pour la diffusivité thermique. La technique a ensuite été appliquée à des gaines de Zircaloy-4, qui représentent une application très intéressante dans le domaine du nucléaire : les résultats montrent que la présence de la couche d'oxyde, d’épaisseur quelques μm, n'a que très peu d’influence sur les déterminations de l'épaisseur et de la diffusivité thermique du Zircaloy-4. Le comportement du déphasage à hautes fréquences (> 1 kHz) ouvre de plus de nouvelles perspectives, avec la possibilité d’étendre le domaine d’application de la méthode aux couches semi-transparentes et aux couches très minces (inférieures au μm). / Modulated photothermal radiometry, a remote non-intrusive technique, was used to measure the thickness and the thermal diffusivity of a metal plate and to characterize a layer on a substrate. A thermal model of 3D heating was developed with considering the thermal exchange by convection for a plate and the thermal resistance of the interface for a layer on a substrate. The sensibility analysis and the multi-parameter studies on the phase shift were performed by the code developed with the Matlab software. Simple formulas were obtained to determine the thickness and the thermal diffusivity of a plate and the ratio of the thermal effusivities for a layer on a substrate. The obtained formulas were experimentally validated for 100 μm - 500 μm plate thickness of various metals (stainless steel 304L, nickel, titanium, tungsten, molybdenum, zinc and iron). The uncertainty of the measurements was lower than 10 % for thickness and lower than 15 % for thermal diffusivity determination. The same technique was applied in the study on Zircaloy-4 cladding that may be of particular interest for the nuclear industry. It was found that the presence of the oxide layer of some μm thickness had practically no effect on the thickness and the thermal diffusivity measurements of Zircaloy-4 cladding. However, the observed effect of a phase shift on high frequency (> 1kHz) may open new perspectives and widen the field of the method application for semi-transparent layers and for very thin layers (of less than μm thickness).
7

Experimental Investigation of Size Effects on Surface Phonon Polaritons and Phonon Transport / Etude expérimentale des effets de taille sur les phonon polaritons de surface et le transport de phonon

Wu, Yunhui 31 January 2019 (has links)
La conduction thermique devient moins efficace à mesure que la taille des struc-tures diminuent en desous du micron, car la diffusion de surface des phononsdevient prédominante et limite plus efficacement les phonons que la diffusionphonon-phonon Umklapp. Des études récentes ont indiqué que les phonon po-laritons de surface (SPhPs), qui sont les ondes électromagnétiques évanescentesgénérées par l’hybridation des phonons optiques et des photons et se propageantà la surface d’une surface diélectrique polaire, pourraient servir de nouveauxvecteurs de chaleur pour améliorer les performances thermiques dans des dis-positifs micro- et nano-métriques. Nous étudions l’état des SPhPs existantdans un film submicronique diélectrique dans une large gamme de fréquences.Le calcul de la conductivité thermique des SPhPs basé sur l’équation de trans-port de Boltzmann (BTE) montre que le flux de chaleur transporté par lesSPhPs est supérieur à celui des phonons. Nous effectuons également une mesurede réflectance thermique dans le domaine temporel (TDTR) de films submi-croniques deSiNet démontrons que la conductivité thermique due aux SPhPsà haute température augmente lorsque l’épaisseur du film dimine. Les résultatsprésentés dans cette thèse ont des applications potentielles dans le domaine dutransfert de chaleur, de la gestion thermique, du rayonnement en champ proche et de la polaritoniques. / Thermal conduction becomes less efficient as structures scale down into submicron sizes since phonon-boundary scattering becomes predominant and impede phonons more efficiently than Umklapp scattering. Recent studies indicated that the surface phonon polaritons (SPhPs), which are the evanescent electromagnetic waves generated by the hybridation of the optical phonons and the photons and propagating at the surface of a polar dielectric material surface, potentially serve as novel heat carriers to enhance the thermal performance in micro- and nanoscale devices. We study the condition of SPhPs existing in a dielectric submicron film with a broad frequency range. The calculaton of SPhPs thermal conductivity based on Boltzmann transport equation (BTE) demonstrates that the heat flux carried by SPhPs exceeds the one carried by phonons. We also conduct a time-domain-thermal-reflectance (TDTR) measurement of $SiN$ submicron films and demonstrate that the thermal conductivity due to the SPhPs at high temperatures increases by decreasing the film thickness. The results presented in this thesis have potential applications in the field of heat transfer, thermal management, near-field radiation and polaritonics.

Page generated in 0.0744 seconds