Spelling suggestions: "subject:"caractérisation dde matériaux"" "subject:"caractérisation dee matériaux""
1 |
Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques / Contribution of in situ nanoindentation in Transmission Electron Microscopy to the study of ceramicsCalvié, Emilie 18 October 2012 (has links)
La connaissance du comportement et des propriétés des matériaux est d’une grande importance pour optimiser leur mise en forme et adapter leur utilisation. Pour étudier ces propriétés de nombreuses techniques sont couramment utilisées : les essais de traction, la microindentation, la nanoindentation instrumentée… Aujourd’hui, un intérêt particulier est porté sur les nanomatériaux et matériaux nanostructurés car ils présentent souvent des propriétés différentes et plus intéressantes. La nanoindentation instrumentée, notamment, permet de déterminer des paramètres matériaux de manière locale. Cependant, le comportement en temps réel ne peut être observé et l’échantillon ne doit pas être de dimension trop faible (typiquement, l’étude de nanoparticules n’est pas envisageable). Le principal atout de la nanoindentation in situ en Microscopie Electronique en Transmission vis-à-vis des autres techniques existantes est la possibilité d’étudier le comportement de nano-objets ou des comportements très locaux et en temps réel, tout en observant les transformations subies par le matériau. Dans cette étude, nous avons évalué les potentialités de cette nouvelle technique via l’analyse de céramiques très étudiées au laboratoire notamment en tant que biomatériaux : la zircone stabilisée et l’alumine. Dans le cas de la zircone (stabilisée à l’yttrium ou au cérium), le but était de localiser à l’échelle nanométrique les contraintes responsables ou inhérentes à la transformation de phase quadratique-monoclinique, phénomène ayant une très grande influence sur les propriétés du matériau massif. Pour ce faire, après avoir déterminé une technique de préparation adaptée, nous proposons une voie d’étude pour la localisation des contraintes liées à la transformation de phase : le CBED (Convergent Beam Electron Diffraction) couplé à la nanoindentation in situ. Dans le cas de l’alumine, l’objectif était d’étudier le matériau (commercial et non un matériau modèle) dans sa forme originelle à savoir sous forme de nanoparticules d’alumine de transition. L’idée était d’étudier le comportement de ces nanoparticules sous compression. Nous avons notamment constaté que ces particules pouvaient subir une grande déformation plastique à température ambiante. Nous avons pu également, sur quelques particules, obtenir une série d’images en cours de compression ainsi que la courbe de charge-déplacement correspondante. Ces résultats ont ensuite été soumis à une analyse des images couplée à une simulation de type Eléments Finis (réalisées par le LAMCOS). / Knowledge of the behavior and properties of materials is of great importance to optimize their processing and adapt their use. To study these properties, many techniques are commonly used: tensile tests, microindentation, instrumented nanoindentation ... Today, particular interest is focused on nanomaterials and nanostructured materials because they often have different and more interesting properties. Instrumented nanoindentation allow to determine material parameters. However, the real-time behavior can not be observed and the study of nano-objects is difficult (nanoparticles for example). The main advantage of in situ TEM (Transmission Electron Microscopy) nanoindentation is the ability to study the behavior of nano-objects in real time. In this study, we evaluated the potential of this new technique by analyzing ceramics extensively studied in the laboratory such as biomaterials: stabilized zirconia and alumina. In the case of zirconia (stabilized with yttrium or cerium), the goal was to locate at the nanoscale, the constraints responsible for the tetragonal to monoclinic phase transformation. This phenomenon having a great influence on the bulk material properties. To do this, after having determined a suitable preparation method, we suggest a way to study the localization of constraints: the CBED (Convergent Beam Electron Diffraction) coupled with in situ TEM nanoindentation. In the case of alumina, the goal was to study the material in its original form (nano powder of transition alumina). The idea was to study the behavior of these nanoparticles under compression. We particularly observed that these particles could undergo large plastic deformation at room temperature. We have also obtained during compression on few particles, series of images and the corresponding load-displacement curve. These results were then analyzed by image analysis coupled with Finite Element simulations (performed in LAMCOS lab).
|
2 |
Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuseGinsac, Nathalie 24 February 2011 (has links) (PDF)
Ce travail de thèse porte sur la caractérisation d'un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d'apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l'ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d'élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d'adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l'effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d'autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées.
|
3 |
Caractérisation des propriétés d’un matériau par radiométrie photothermique modulée / Characterization of the properties of a material by modulated photothermal radiometryPham Tu Quoc, Sang 05 December 2014 (has links)
L'objectif de nos études est d’appliquer la technique de radiométrie photothermique modulée, technique non intrusive et applicable à distance, pour d’une part, mesurer l'épaisseur et la diffusivité thermique d'une plaque, et d’autre part, caractériser une couche sur un substrat. Un modèle thermique du chauffage 3D a été développé avec prise en compte de l’échange thermique par convection dans le cas d'une plaque, et de la résistance thermique de l'interface dans le cas d'une couche sur un substrat. Une analyse de sensibilité des paramètres sur le déphasage et des études multiparamétriques ont été réalisées à l'aide d'un code de calcul développé sous Matlab. Des formules simples ont ainsi été déterminées pour mesurer l'épaisseur et la diffusivité thermique d'une plaque ainsi que le rapport des effusivités thermiques dans le cas d'une couche sur un substrat. Les formules établies pour les plaques ont été validées expérimentalement sur des plaques d’épaisseur variant de 100μm à 500μm pour différents métaux : inox 304L, nickel, titane, tungstène, molybdène, zinc et fer. L’incertitude de ces déterminations est inférieure à 10% pour l'épaisseur et inférieure à 15% pour la diffusivité thermique. La technique a ensuite été appliquée à des gaines de Zircaloy-4, qui représentent une application très intéressante dans le domaine du nucléaire : les résultats montrent que la présence de la couche d'oxyde, d’épaisseur quelques μm, n'a que très peu d’influence sur les déterminations de l'épaisseur et de la diffusivité thermique du Zircaloy-4. Le comportement du déphasage à hautes fréquences (> 1 kHz) ouvre de plus de nouvelles perspectives, avec la possibilité d’étendre le domaine d’application de la méthode aux couches semi-transparentes et aux couches très minces (inférieures au μm). / Modulated photothermal radiometry, a remote non-intrusive technique, was used to measure the thickness and the thermal diffusivity of a metal plate and to characterize a layer on a substrate. A thermal model of 3D heating was developed with considering the thermal exchange by convection for a plate and the thermal resistance of the interface for a layer on a substrate. The sensibility analysis and the multi-parameter studies on the phase shift were performed by the code developed with the Matlab software. Simple formulas were obtained to determine the thickness and the thermal diffusivity of a plate and the ratio of the thermal effusivities for a layer on a substrate. The obtained formulas were experimentally validated for 100 μm - 500 μm plate thickness of various metals (stainless steel 304L, nickel, titanium, tungsten, molybdenum, zinc and iron). The uncertainty of the measurements was lower than 10 % for thickness and lower than 15 % for thermal diffusivity determination. The same technique was applied in the study on Zircaloy-4 cladding that may be of particular interest for the nuclear industry. It was found that the presence of the oxide layer of some μm thickness had practically no effect on the thickness and the thermal diffusivity measurements of Zircaloy-4 cladding. However, the observed effect of a phase shift on high frequency (> 1kHz) may open new perspectives and widen the field of the method application for semi-transparent layers and for very thin layers (of less than μm thickness).
|
4 |
Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse / Characterization of polylactic acid- Bioglass® composites for bone repair applicationsGinsac, Nathalie 24 February 2011 (has links)
Ce travail de thèse porte sur la caractérisation d’un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d’apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l’ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d’élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d’adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l’effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d’autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées. / The aim of this work was to evaluate polylactic acid- Bioglass® composites for bone repair applications. Bioglass being too brittle to be used alone for load bearing applications, our strategy was to incorporate bioactive Bioglass® particles into a bioresorbable polymer matrix processed by conventional manufacturing techniques. The composite were processed by injection moulding from granules prepared by a solvent route. The composites exhibit higher Young modulus but lower strength and strain to failure than polymer alone. This is attributed to a decrease of molecular weight of the polymer matrix during the different steps of the process. Another processing method (hot pressing) was used to limit the drop in molecular weight of the polymer matrix: it leads to higher mechanical properties. Therefore, a careful control of the Polymer degradation may insure better mechanical properties and a better control of the degradation rate in vivo. The bioactivity of composites with 20, 30, 50 Wt. % of Bioglass® was a assessed by immersion in simulated body fluid. All the composites are bioactive, and all the more since the Bioglass® content is large. On the other side, the degradation of composites with a Bioglass® content of 50 wt. % is very rapid. Biological evaluation was conducted in vitro and in vivo. Osteoblast cell cultures and in vivo evaluation in rabbits demonstrate that polylactic acid - Bioglass® composites are biocompatible and osteoconductive. Such composites may therefore be a good option for bone repair applications in the future.
|
5 |
Nouvelles prothèses intervertébrales en composite céramique : Etude des matériaux, mise en place d'un test multiphysique in vitro et analyse de performances / New ceramic composite intervertebral prostheses : Materials study, set up of a new in vitro assessment and performance analysisPreiss, Laura 04 May 2016 (has links)
Ce travail de thèse a porté sur de nouveaux implants intervertébraux en céramique. Au cours du projet dans son ensemble (projet européen Longlife), un nouveau matériau et de nouveaux designs d’implants ont été développés, ainsi qu’un nouveau test destiné à simuler les sollicitations subies in vivo par les implants afin d’estimer leur durée de vie. Le nouveau matériau développé est un composite triphasé composé d’une matrice de zircone dopée à l’oxyde de cérium (pour sa résistance au vieillissement), d’une phase globulaire d’alumine α (pour affiner la microstructure) et d’une phase allongée composée d’aluminates de strontium (pour augmenter la ténacité). La première partie du travail a consisté à caractériser ce matériau afin de connaître son comportement en termes de résistance mécanique, stabilité thermique, et de résistance à la stérilisation. Une deuxième partie a été consacrée au développement d’un test multiphysique regroupant les différentes sollicitations attendues par une prothèse in vivo (fatigue axiale, micro-séparation, vieillissement et usure). Il a fallu pour cela s’appuyer sur des simulations numériques qui ont permis de développer le système. Les données de la littérature ont été utilisées afin de choisir les paramètres du test (durée, fréquence, milieu d’essai). Enfin, la dernière partie de ce travail a été la mise à l’épreuve de différents prototypes à travers le test multiphysique et leur caractérisation en cours d’essai. Les principaux résultats de ce travail de thèse sont les suivants : le composite montre un comportement pseudo-plastique sous charge, avec une nette transformation de phase avant rupture, ce qui est positif dans le cadre de son utilisation. De plus, il ne semble pas affecté par la stérilisation. Du point de vue des implants développés, peu passent le test multiphysique. Le design, ainsi que la géométrie (notamment la clearance des échantillons) sont des leviers d’amélioration qui permettront d’augmenter la fiabilité des implants. / This work deals with the development of new intervertebral prostheses, made with ceramics. A whole European project, Longlife, was dedicated to the development of such implants. To achieve this goal, several axes have been followed: the synthesis of a new material, the development of new designs of intervertebral bodies, and the set-up of a new test aimed at reproducing in vitro the different solicitations undergone by an intervertebral implant in vivo. The new material developed is a triphasic composite composed of a matrix of ceria-doped zirconia (insensitive to ageing), a secondary globular phase of α-alumina (to reduce the grain size), and a third, elongated phase composed of strontium aluminates platelets (in order to improve fracture toughness). The first part of this work was to characterize this new material in order to forecast its behaviour under mechanical solicitation, thermal stability and resistance to sterilization. Secondly, the set-up of the new test is exposed. Different steps were chosen (axial fatigue, micro-separation, ageing and wear) in order to reproduce the “real-life” solicitations. To achieve this goal, Finite Elements simulations were performed, allowing the development of specific specimen holders that mimic the fixation of the implants in the vertebrae. The parameters of the test (duration, frequency, medium) were chosen after a details survey of the literature and of standards. At the end, we tested different prototypes trough this new multiphysic assessment set up. As a main result of this thesis, the chosen ceramic composite exhibits a pseudo-plastic behaviour, with a large deformation due to phase transformation before fracture, which is a positive result in the framework of the forecast applications. Moreover, the material doesn’t seem degraded by the sterilization processes. Concerning the multiphysic test, only a few implants resisted it. The design of the implants is a key-point, as well as the geometry (in particular, clearance seems to be critical).
|
6 |
Étude par tomographie RX d'anodes à base de silicium pour batteries Li-ion / X-ray tomography study of silicon-based anodes for Li-ion batteriesVanpeene, Victor 22 March 2019 (has links)
De par sa capacité spécifique théorique dix fois plus élevée que celle du graphite actuellement utilisé comme matériau actif d'anode pour les batteries Li-ion, le silicium peut jouer un rôle important dans l'augmentation de la densité d'énergie de ces systèmes. La réaction d'alliage mise en place lors de sa lithiation se traduit cependant par une forte expansion volumique du silicium (~300 % contre seulement ~10 % pour le graphite), conduisant à la dégradation structurale de l'électrode, affectant notablement sa tenue au cyclage. Comprendre en détail ces phénomènes de dégradation et développer des stratégies pour limiter leur impact sur le fonctionnement de l'électrode présentent un intérêt indéniable pour la communauté scientifique du domaine. L'objectif de ces travaux de thèse était en premier lieu de développer une technique de caractérisation adaptée à l'observation de ces phénomènes de dégradation et d'en tirer les informations nécessaires pour optimiser la formulation des anodes à base de silicium. Dans ce contexte, nous avons utilisé la tomographie aux rayons X qui présente l'avantage d'être une technique analytique non-destructive permettant le suivi in situ et en 3D des variations morphologiques s'opérant au sein de l'électrode lors de son fonctionnement. Cette technique a pu être adaptée à l'étude de cas du silicium en ajustant les volumes d'électrodes analysés, la résolution spatiale et la résolution temporelle aux phénomènes à observer. Des procédures de traitement d'images adéquates ont été appliquées afin d'extraire de ces analyses tomographiques un maximum d'informations qualitatives et quantitatives pertinentes sur leur variation morphologique. De plus, cette technique a pu être couplée à la diffraction des rayons X afin de compléter la compréhension de ces phénomènes. Nous avons ainsi montré que l'utilisation d'un collecteur de courant 3D structurant en papier carbone permet d'atténuer les déformations morphologiques d'une anode de Si et d'augmenter leur réversibilité en comparaison avec un collecteur de courant conventionnel de géométrie plane en cuivre. Nous avons aussi montré que l'utilisation de nanoplaquettes de graphène comme additif conducteur en remplacement du noir de carbone permet de former un réseau conducteur plus à même de supporter les variations volumiques importantes du silicium. Enfin, la tomographie RX a permis d'étudier de façon dynamique et quantitative la fissuration et la délamination d'une électrode de Si déposée sur un collecteur de cuivre. Nous avons ainsi mis en évidence l'impact notable d'un procédé de "maturation" de l'électrode pour minimiser ces phénomènes délétères de fissuration-délamination de l'électrode. / Because of its theoretical specific capacity ten times higher than that of graphite currently used as active anode material for Li-ion batteries, silicon can play an important role in increasing the energy density of these systems. However, the alloying reaction set up during its lithiation results in a high volume expansion of silicon (~300% compared with only ~10% for graphite) leading to the structural degradation of the electrode, which is significantly affecting its cycling behavior. Understanding in detail these phenomena of degradation and developing strategies to limit their impact on the functioning of the electrode are of undeniable interest for the scientific community of the field. The objective of this thesis work was first to develop a characterization technique adapted to the observation of these degradation phenomena and to draw the necessary information to optimize the formulation of silicon-based anodes. In this context, we have used X-ray tomography which has the advantage of being a non-destructive analytical technique allowing in situ and 3D monitoring of the morphological variations occurring within the electrode during its operation. This technique has been adapted to the case study of silicon by adjusting the analyzed electrode volumes, the spatial resolution and the temporal resolution to the phenomena to be observed. Appropriate image processing procedures were applied to extract from these tomographic analyzes as much qualitative and quantitative information as possible on their morphological variation. In addition, this technique could be coupled to X-ray diffraction to complete the understanding of these phenomena. We have shown that the use of a carbon paper structuring 3D current collector makes it possible to attenuate the morphological deformations of an Si anode and to increase their reversibility in comparison with a conventional copper current collector of plane geometry. We have also shown that the use of graphene nanoplatelets as a conductive additive to replace carbon black can form a conductive network more able to withstand the large volume variations of silicon. Finally, the X-ray tomography allowed studying dynamically and quantitatively the cracking and delamination of an Si electrode deposited on a copper collector. We have thus demonstrated the significant impact of a process of "maturation" of the electrode to minimize these deleterious phenomena of cracking-delamination of the electrode.
|
7 |
Développement d'une méthode de caractérisation 3D des fissures de fatigue à l'aide de la corrélation d'images numériques obtenues par tomographie X / Development of a method for 3D characterisation of fatigue crack using digital volume correlation on X-ray microtomography imagesLachambre, Joël 27 May 2014 (has links)
Ce mémoire présente une méthode mise au point pour caractériser et analyser des fissures de fatigue présentant un fort caractère tridimensionnel dans des matériaux métalliques opaques. L'analyse consiste à déterminer avec précision la position du front de la fissure étudiée et à mesurer des valeurs de facteurs d'intensité des contraintes le long du front par projection sur les séries de Williams du champ de déplacement issu de la corrélation numérique d'images 3D obtenues par tomographie aux rayons X. La corrélation d'images 3D numériques est utilisée afin de mesurer le champ de déplacement en volume lors de la mise sous chargement d'une éprouvette fissurée fatiguée. La corrélation d'images nécessitant un mouchetis, le matériau retenu pour les expériences est la fonte à graphite sphéroïdal car il présente un mouchetis 3D naturel (les nodules de graphites) parfaitement imagé par tomographie aux rayons X. Le cyclage est appliqué à l'aide d'une machine de fatigue in situ permettant d'alterner des phases de propagation de la fissure avec des acquisitions tomographiques sous différentes charges. L'introduction d'un défaut artificiel (une entaille obtenue par usinage laser) permet de maîtriser l'amorçage et la propagation de la fissure in situ. La méthode de corrélation d'images 3D numériques employée dans ces travaux étant basée sur des éléments finis, nous avons cherché à tirer profit de différents outils développés dans le cadre de cette méthode. Les surfaces libres sont spécifiées afin de bien conditionner le maillage et un enrichissement dans l'esprit des X-FEM permet de renseigner la fissure dont la position est repérée grâce à la trace laissée dans le résidu de corrélation entre l'image avant cyclage et la dernière image acquise. Une régularisation mécanique est également introduite dans le calcul sous forme d'un filtre de longueur d'onde choisie. Le champ de déplacement mesuré avec précision est ensuite projeté sur les séries de Williams augmentées des termes correctifs de Leblond et Torlai qui prennent en compte la courbure du front de la fissure. L'annulation du terme super-singulier d'ordre -1 des séries de Williams est utilisée pour détecter la position du front de la fissure. Une procédure itérative a été mise en place afin de concilier l'enrichissement et la courbure du front avec la projection sur les séries de Williams. Une fois la position du front 3D de la fissure déterminée et les valeurs des facteurs d'intensité des contraintes associées calculées, les résultats obtenus sont confrontés à la littérature. / This manuscript describes a methodology used to compute Stress Intensity Factor values along the curved front of a fatigue crack inside a nodular cast iron. An artificial defect is introduced at the surface of a small sample. The initiation and growth of a fatigue crack from this defect during constant amplitude cycling is monitored in situ by laboratory x-ray tomography. The method for processing the 3D images in order to compute SIF values is described in detail. The results obtained show variations of the stress intensity factor values along the crack front.
|
8 |
Development of two techniques for thermal characterization of materials : Scanning Thermal Microscopy (SThM) and 2ω method / Développement de deux techniques de charactérisation thermique des matériaux : La microscopie thermique à sonde locale (SThM) et la méthode 2ωAssy, Ali 03 February 2015 (has links)
Deux techniques de caractérisation thermique des matériaux et d’analyse du transfert de chaleur aux micro- et nano- échelles ont été étudiées et sont présentées dans ce mémoire. La première technique est la microscopie thermique à sonde locale (SThM). La pointe d’un microscope à force atomique intègre un élément résistif. Utilisée en mode contact, cette pointe, chauffée par effet joule, permet l'excitation thermique localisée de l’échantillon. La détermination des propriétés thermiques de l’échantillon nécessite l'analyse de la réponse de cette pointe avec un modèle du système sonde-échantillon et de son environnement. Un état de l'art général des études réalisées en SThM permet de poser les questions scientifiques actuellement traitées dans le domaine. Une attention particulière est accordée à l'interaction thermique sonde-échantillon. L’étude ici présentée tient compte des propriétés thermiques, de la rugosité et de la mouillabilité de la surface de différents échantillons. Une nouvelle méthodologie est établie pour la spécification du transfert de chaleur échangée par conduction thermique au travers du ménisque de l'eau formé au contact sonde-échantillon. Cette méthodologie est basée sur l'analyse de la dépendance à la température de la sonde des courbes de force-distance obtenues à l'air ambiant. Elle est appliquée à trois sondes de taille, forme et constitution différentes: la sonde Wollaston, la sonde KNT et une sonde en silicium dopé. Quels que soient la sonde et l'échantillon, la contribution du ménisque d’eau à l'interaction est montrée être inférieure à celle de l'air. La conductance thermique au contact solide-solide est déterminée pour différents échantillons. Cela a permis d’identifier le coefficient de transmission de phonons dans le cas de la sonde KNT et des échantillons non-métalliques. La conduction thermique via l’air dépend fortement de la conductivité thermique de l'échantillon. La sensibilité à la conductivité thermique pour les sondes Wollaston et KNT est part ailleurs montrée fortement réduite pour les matériaux de conductivité thermique supérieure à 10 et quelques W.m-1.K-1 respectivement. La seconde technique développée est une méthode d’analyse thermique moins locale nécessitant l’instrumentation de la surface de l’échantillon avec un réseau de sondes résistives filiformes. L’un des fils du réseau, chauffé par un courant alternatif à la fréquence f, a le rôle de source excitatrice continue et à la fréquence 2f de l’échantillon. Un modèle analytique 2D, basé sur le principe des ondes thermiques et développé pour identifier les propriétés thermiques d’échantillons anisotropes est présenté. Des simulations par éléments finis et avec ce modèle ont été utilisées pour dimensionner le montage expérimental et valider la méthode sur un échantillon de silicium pur. Les résultats obtenus à des températures de l’échantillon variant de l’ambiante à 500 K corroborent ceux de la littérature. / Two techniques to characterize the thermal properties of materials and to analyze the heat transfer at the micro/nanoscales have been studied and are presented in this manuscript. The first technique is an Atomic Force Microscopy (AFM)-based Scanning Thermal Microscopy (SThM) technique. Operating in its active mode, the AFM probe integrates a resistive element that is electrically heated. Used in AFM contact mode, it allows the localized thermal excitation of the material to be studied. The determination of the sample thermal properties requires the analysis of the probe thermal response through the modeling of the probe-sample system including its surrounding. Through a state of the art of the SThM studies, the current scientific questions and the analytical models used to analyze the probe-sample system are exposed. Special attention is given to the probe-sample thermal interaction that conditions the tip-sample interface temperature. In this work, a new methodology based on the analysis of the dependence of force-distance curves on probe temperature obtained in ambient air has been established. It permits the study and the specification of the heat rate exchanged between probe and sample through thermal conduction through water meniscus. The methodology has been applied with samples with different thermal properties, surface roughness and wettability to three resistive probes different in size and heater configurations: Wollaston, KNT and doped silicon (DS) probes. Whatever the probe and the sample are, the contribution of water meniscus in the probe-sample interaction has been shown to be lower than the one through air. The thermal conductances at the solid-solid contact were determined for various samples. This allowed identifying the phonon transmission coefficient in the case of KNT probe and a nonmetallic sample. The heat conduction through air strongly depends on the sample thermal conductivity. Moreover, the sensitivity to sample thermal conductivity for the Wollaston and KNT probes is shown to be strongly reduced for thermal conductivities larger than 10 and few W.m-1.K-1 respectively. The second technique developed in this thesis is a less local thermal analysis method. It operates by contact, requiring the implementation of the sample with a network of resistive wire probes. One wire of the network is heated by an alternating current at frequency f and has the role of heating source, continuous and at 2f frequency, for the sample. A 2D analytical model, based on the principle of thermal-waves, was developed to identify though the measurements the effective thermal properties of anisotropic samples. Finite element simulations and this model were used to design the experimental set-up and validate the method on a sample of pure silicon. The results obtained at sample temperatures ranging from ambient to 500 K are consistent with literature.
|
Page generated in 0.1021 seconds