• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse

Ginsac, Nathalie 24 February 2011 (has links) (PDF)
Ce travail de thèse porte sur la caractérisation d'un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d'apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l'ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d'élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d'adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l'effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d'autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées.
2

Synthèse de nanostructures hybrides biomimétiques (phosphates de calcium + protéines) par technique laser avancées : études structurales, biochimiques et biologiques

Sima, Nicolae-Felix 04 October 2011 (has links) (PDF)
Le travail présenté dans cette thèse porte sur l'élaboration de couches minces des biomatériaux biomimétiques nanostructurées par des techniques lasers pulsés et leur évaluation de point de vue physico-chimique et biologique (biocompatibilité, prolifération et différentiation cellulaires avec des biomatériaux). Le but vise à développer une nouvelle méthode de recouvrement d'implants osseux par des techniques laser pulsé avancées (PLD - Pulsed Laser Deposition et MAPLE - Matrix Assisted Pulsed Laser Evaporation). Ces techniques sont utilisées pour la synthèse d'un système biphasique composé de nanoparticules d'hydroxyapatite (HA) associées à des protéines d'adhérence type fibronectine (FN) et vitronectine (VN) déposées sur un substrat type titane. Le support métallique permettra de maintenir la rigidité mécanique, l'hydroxyapatite favorisera la bio-intégration dans le tissu osseux et les protéines accélèreront l'adhérence cellulaire. L'objectif principal est d'accélérer l'adhérence des cellules et formation des tissus sur les implants. Les études de prolifération et différentiation cellulaire suggèrent une prédisposition des cellules à la prolifération induite par les revêtements VN et à la différentiation stimulée par les revêtements FN. Les effets significatifs sur l'attachement, l'adhésion et la prolifération observés dans nos études sont très importants pour la première phase de stabilité mécanique d'un implant. Les couches HA/protéines déposées par laser pourraient permettre de réduire cette phase.
3

Synthèse de nanostructures hybrides biomimétiques (phosphates de calcium + protéines) par technique laser avancées : études structurales, biochimiques et biologiques / The synthesis of hybrid biomimetic nanostructures (calcium phosphates + proteins) by advanced laser techniques : structural, biochemical and biological characterization

Sima, Nicolae-Felix 04 October 2011 (has links)
Le travail présenté dans cette thèse porte sur l’élaboration de couches minces des biomatériaux biomimétiques nanostructurées par des techniques lasers pulsés et leur évaluation de point de vue physico-chimique et biologique (biocompatibilité, prolifération et différentiation cellulaires avec des biomatériaux). Le but vise à développer une nouvelle méthode de recouvrement d’implants osseux par des techniques laser pulsé avancées (PLD – Pulsed Laser Deposition et MAPLE - Matrix Assisted Pulsed Laser Evaporation). Ces techniques sont utilisées pour la synthèse d’un système biphasique composé de nanoparticules d’hydroxyapatite (HA) associées à des protéines d’adhérence type fibronectine (FN) et vitronectine (VN) déposées sur un substrat type titane. Le support métallique permettra de maintenir la rigidité mécanique, l’hydroxyapatite favorisera la bio-intégration dans le tissu osseux et les protéines accélèreront l’adhérence cellulaire. L’objectif principal est d’accélérer l’adhérence des cellules et formation des tissus sur les implants. Les études de prolifération et différentiation cellulaire suggèrent une prédisposition des cellules à la prolifération induite par les revêtements VN et à la différentiation stimulée par les revêtements FN. Les effets significatifs sur l’attachement, l’adhésion et la prolifération observés dans nos études sont très importants pour la première phase de stabilité mécanique d’un implant. Les couches HA/protéines déposées par laser pourraient permettre de réduire cette phase. / The work presented within the thesis concern the fabrication of biomimetic nanostructured biomaterial thin films by pulsed laser techniques and their evaluation from the physico-chemical and biological (cellular biocompatibility, proliferation and differentiation) points of view. The aim is to develop a new method for coating the osseous implants by advanced pulsed laser techniques (PLD – pulsed laser deposition and MAPLE – matrix assisted pulsed laser evaporation). These techniques are used for the fabrication of a biphasic system composed of hydroxyapatite (HA) nanoparticules associated with large adhesion proteins as e.g. fibronectin (FN) and vitronectin (VN) deposited on a titanium substrate. The metallic substrate will allow keeping the mechanical rigidity; the hydroxyapatite will favor the bio-integration in the osseous tissue while the proteins will accelerate the cellular adhesion. The main objective is to speed up the cellular adhesion and the formation of new tissue around the implant. The cellular proliferation and differentiation studies demonstrated a predisposal to cell proliferation induced by the VN coatings and to cell differentiation by FN. The significant effects on the cell adhesion, proliferation and differentiation observed in our studies are of great importance for the mechanical stability phase of the implant. The layers HA/proteins deposited by laser could reduce the time of this phase.
4

Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse / Characterization of polylactic acid- Bioglass® composites for bone repair applications

Ginsac, Nathalie 24 February 2011 (has links)
Ce travail de thèse porte sur la caractérisation d’un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d’apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l’ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d’élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d’adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l’effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d’autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées. / The aim of this work was to evaluate polylactic acid- Bioglass® composites for bone repair applications. Bioglass being too brittle to be used alone for load bearing applications, our strategy was to incorporate bioactive Bioglass® particles into a bioresorbable polymer matrix processed by conventional manufacturing techniques. The composite were processed by injection moulding from granules prepared by a solvent route. The composites exhibit higher Young modulus but lower strength and strain to failure than polymer alone. This is attributed to a decrease of molecular weight of the polymer matrix during the different steps of the process. Another processing method (hot pressing) was used to limit the drop in molecular weight of the polymer matrix: it leads to higher mechanical properties. Therefore, a careful control of the Polymer degradation may insure better mechanical properties and a better control of the degradation rate in vivo. The bioactivity of composites with 20, 30, 50 Wt. % of Bioglass® was a assessed by immersion in simulated body fluid. All the composites are bioactive, and all the more since the Bioglass® content is large. On the other side, the degradation of composites with a Bioglass® content of 50 wt. % is very rapid. Biological evaluation was conducted in vitro and in vivo. Osteoblast cell cultures and in vivo evaluation in rabbits demonstrate that polylactic acid - Bioglass® composites are biocompatible and osteoconductive. Such composites may therefore be a good option for bone repair applications in the future.
5

Mise en oeuvre de biocomposites Poly(acide lactique)/Bioverres : Relation structure/ rhéologie/procédés de mise en forme / Biocomposites based on poly(lactic acid) and bioglass® fillers : Processing rheological and mechanical properties

Dergham, Nora 12 September 2014 (has links)
Le travail présenté porte sur la rhéologie, la mise en forme et la caractérisation de matériaux biocomposites de nouvelles générations pour des applications orthopédiques. Dans le cadre de cette étude, des biocomposites poly (D,L-lactide) (PDLLA)/bioverres ont été élaborés par extrusion bivis sous atmosphère inerte. Les bioverres différent par la nature de leur traitement thermique et leur morphologie. La première partie a été consacrée à l’étude de l’état de la dispersion des bioverres dans la matrice polymère. Nous avons montré que l’homogénéité de cette dispersion dépend, d’une part de la structure, de la morphologie, du taux volumique des charges et d’autre part des paramètres du procédé (cisaillement, température,…). Le comportement rhéologique des suspensions a été étudié à l’état fondu ainsi qu’à l’état solide. Un accent particulier a été porté sur l’étude de l’influence du taux des bioverres, de leur taille moyenne et plus particulièrement de leur traitement thermique. Les masses molaires de PDLLA extrait des composites élaborés ont été évaluées par chromatographie d’exclusion stérique (CES). Enfin, la qualité de la dispersion des charges, en termes de distance inter-particulaire et taille moyenne, a été étudiée par microscopie électronique à balayage (MEB) et analyses d’image. Il a été montré que l’utilisation de bioverres non traités thermiquement lors de la mise en forme de composites à haute température provoque la dégradation de la matrice. Aussi, on assiste à une réduction des masses molaires. Les propriétés viscoélastiques et les propriétés mécaniques sont altérées à leur tour. Cette dégradation a été étudiée par spectroscopie infrarouge (IRTF) et par analyse thermogravimétrique (ATG). Les origines et mécanismes sous-jacents de cette dégradation ont été proposés. Il est démontré pour la première fois que la présente dégradation du PDLLA peut être atténuée par l’emploi de différentes charges céramiques à propriétés spécifiques. En outre, l’utilisation de ces bioverres a permis l’obtention d’une dispersion homogène au sein de la matrice. L’analyse des propriétés rhéologiques de tels matériaux et leur modélisation a permis de mettre en évidence les interactions matrice-charges. La deuxième partie de l’étude a porté sur l’élaboration des biocomposites multicouches à gradient de propriétés par coextrusion. Ces multicouches présentent, d’une part, des propriétés variables selon le type de traitement et de composition du bioverre actif. D’autre part, le gradient de propriété a été également réalisé en faisant varier les paramètres expérimentaux relatifs au procédé de coextrusion. Les matériaux finaux, ainsi obtenus, présentent de très bonnes propriétés cohésives avec une bioactivité maîtrisée et contrôlée. / Bioactive and biodegradable composites have gained increasing importance in the orthopedic field as bone replacement materials and as scaffolds for tissue engineering. In this study, biocomposites based on poly(D,L-lactide) (PDLLA) and bioactive glass fillers were prepared by a twin screw extrusion under Argon inert gas with various filler contents, thermal treatments and particle sizes. The processing conditions were monitored to produce composites with well controlled physico-chemical, mechanical and dispersive properties. The aim of the present work is to gain a fundamental understanding of the relationships between structure, processing conditions and final properties of these biocomposites. The dispersion state of fillers was characterized by SEM. It was highlighted that the inclusion of non treated bioglass in PDLLA under elevated temperatures resulted in a decrease of molar mass. This degradation of the matrix leads to a reduction of the viscoelastic and mechanical properties of the composites. The origin and mechanisms of this degradation were probed using a Fourier Transform Infrared (FTIR) spectroscopy. The optimization of their processing allows a better control of this drastic loss of properties. Furthermore, the demonstration had been done that the present degradation of PDLLA matrix can be attenuated using a different glass ceramics with a special size and thermally treated. The rheological behaviour in linear and non linear viscoelasticity of the controlled PDLLA/BG suspensions has been assessed in both solid and molten state. Hence, their experimental rheological behaviour was compared to the theoretical suspension models. Finally, the effects of volume fraction, particle size and thermal treatment on the mechanical properties have been also investigated and discussed. The obtained results corroborate the rheological and physic-chemical ones. Finally, the multilayer structures with various amounts and treatments of BG fillers were obtained by a designed scale lab coextrusion machines. The gradient of properties has been obtained and improved cohesion properties between the neighboring were highlighted. Their bioactivity was finally demonstrated. At last, no residual stress inside the multilayers can be observed. This observation explains the conservation of the initial shape of those implants, without nor deformation neither relaxation, during the simulation of the chirurgical implantation in SBF.

Page generated in 0.0585 seconds