• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse

Ginsac, Nathalie 24 February 2011 (has links) (PDF)
Ce travail de thèse porte sur la caractérisation d'un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d'apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l'ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d'élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d'adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l'effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d'autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées.
2

Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse / Characterization of polylactic acid- Bioglass® composites for bone repair applications

Ginsac, Nathalie 24 February 2011 (has links)
Ce travail de thèse porte sur la caractérisation d’un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d’apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l’ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d’élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d’adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l’effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d’autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées. / The aim of this work was to evaluate polylactic acid- Bioglass® composites for bone repair applications. Bioglass being too brittle to be used alone for load bearing applications, our strategy was to incorporate bioactive Bioglass® particles into a bioresorbable polymer matrix processed by conventional manufacturing techniques. The composite were processed by injection moulding from granules prepared by a solvent route. The composites exhibit higher Young modulus but lower strength and strain to failure than polymer alone. This is attributed to a decrease of molecular weight of the polymer matrix during the different steps of the process. Another processing method (hot pressing) was used to limit the drop in molecular weight of the polymer matrix: it leads to higher mechanical properties. Therefore, a careful control of the Polymer degradation may insure better mechanical properties and a better control of the degradation rate in vivo. The bioactivity of composites with 20, 30, 50 Wt. % of Bioglass® was a assessed by immersion in simulated body fluid. All the composites are bioactive, and all the more since the Bioglass® content is large. On the other side, the degradation of composites with a Bioglass® content of 50 wt. % is very rapid. Biological evaluation was conducted in vitro and in vivo. Osteoblast cell cultures and in vivo evaluation in rabbits demonstrate that polylactic acid - Bioglass® composites are biocompatible and osteoconductive. Such composites may therefore be a good option for bone repair applications in the future.

Page generated in 0.0547 seconds