• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Préparation catalytique de nouveaux matériaux polyesters et polycarbonate / Catalytic engineering for the synthesis of new polyester and polycarbonate materials

Guérin, William 11 October 2013 (has links)
Les polyesters et polycarbonates aliphatiques biocompatibles et biodégradables sont typiquement utilisés pour la fabrication de matériaux médicaux tels que les fils de sutures ou les capsules de libération contrôlée de principe actif. Ces polymères synthétiques sont aussi développés comme substituts aux plastiques issus du pétrole. La méthode de choix pour obtenir des polycarbonates ou polyesters de longueur et de structure contrôlée est la polymérisation par ouverture de cycle (ROP) de monomères cycliques à cinq ou six chaînons. Actuellement, la majorité de ces polymères présentent des propriétés physiques intéressantes mais souvent limitées à certaines applications spécifiques. Des efforts sont donc consacrés à la synthèse de nouveaux monomères et polymères ou copolymères avec des microstructures contrôlées afin de moduler à convenance les propriétés thermiques et mécaniques du matériau final. Tandis que le poly(triméthylène carbonate), PTMC, est un élastomère, le poly(L-lactide), PLLA, est un polyester fragile. L’association de ces monomères au sein d’un copolymère a permis d’améliorer et de moduler les propriétés thermo-mécaniques du PLLA. Selon la nature de la copolymérisation (séquentielle ou simultanée) et du système catalytique utilisé, des copolymères de microstructures différentes ont été obtenus. Cette approche a permis de synthétiser de nouveaux polycarbonates ou poly(carbonate-co-ester) bien définis, notamment à partir de carbonates cycliques à cinq chaînons, comme le carbonate d’éthylène ou le carbonate de cyclohexène, réputés non polymérisable. Il devient alors envisageable de préparer de nouveaux polymères jusqu’alors supposés non synthétisable et ainsi d’accéder à de nouveaux matériaux biodégradable susceptibles de pouvoir remplacer les polymères de commodités problématiques comme le polycarbonate de bisphénol A. / Biocompatible and biodegradable aliphatic polyesters and polycarbonates are typically used for the manufacture of medical devices such as sutures or capsules for controlled release of active molecules. These synthetic polymers are also developed as substitutes for petroleum-based plastics. The method of choice for the synthesis of polycarbonates or polyesters with controlled length and structure is the ring-opening polymerization (ROP) of five or six membered ring cyclic monomers. Currently, the majority of these polymers exhibit interesting physical properties but often limited to specific applications. Efforts are therefore devoted to the synthesis of new monomers and polymers or copolymers with controlled microstructure to modulate at convenience the thermal and mechanical properties of the final material. Whereas poly(trimethylene carbonate), PTMC, is an elastomer, poly(L-lactide), PLLA, is a fragile polyester. The combination of these monomers in a copolymer has improved and modulate the thermo-mechanical properties of PLLA. Depending on the nature of the copolymerization (sequential or simultaneous) and the catalytic system used, copolymers of different microstructures were obtained. This approach has allowed to synthesize new well defined polycarbonates or poly(carbonate-co-ester), especially from five-membered cyclic carbonates such as ethylene carbonate or cyclohexene carbonate, known for being not polymerizable. It then becomes possible to prepare new polymers supposed to be not synthesizable and access to new biodegradable materials that can replace problematic commodity polymers such as bisphenol A polycarbonate.
2

Effets de synergies entre montmorillonites organophiles (OMMT) et graphène dans les nanocomposites à base de polymères biodégradables / Synergetic Effects between organomontmorillonites (OMMT) and graphene in nanocomposites based on biodegradable polymers

Bouakaz, Boubkeur Seddik 18 January 2017 (has links)
Les travaux réalisés au cours de cette thèse traitent et misent en avant l’effet d’associer différents types d’argiles organophiles OMMT (Cloisite®15A et Cloisite®30B) avec le graphène fonctionnalisé époxy (Gr) sur l’ensemble des propriétés fonctionnelles des matrices biodégradables polyacide lactique (PLA), poly (ε-caprolactone) (PCL) et leur mélange PLA/PCL de composition 70/30. Le premier volet est consacré à l’étude des mélanges binaires (PLA/Cloisite® et PLA/Gr) et ternaires (PLA/Cloisite®/Gr) préparés à l’état fondu. L’association des deux renforts OMMT/Gr a amélioré l’ensemble des paramètres rhéologiques de la matrice PLA et contribue à l’apparition d’un comportement viscoélastique pseudo-solide pour les mélanges PLA/Gr en présence des argiles, attribué à un meilleur état de dispersion des couples confirmé par la microscopie électronique à transmission. Les propriétés barrières à la vapeur d’eau, thermiques et thermomécaniques du PLA ont été sensiblement améliorées, particulièrement en présence des couples de nanocharges OMMT/Gr et montrent le grand intérêt des nanobiocomposites PLA/Cloisite®/Gr dans plusieurs applications. La seconde partie est liée aux matériaux nanocomposites à base de la matrice PCL. L’étude rhéologique a confirmé l’intérêt de combiner les nanocharges OMMT et graphène et indique la présence de réseaux 3D dans les nanocomposites PCL/OMMT et PCL/OMMT/Gr. La bonne dispersion des nanocharges a nettement amélioré les propriétés barrières à la vapeur d’eau et la tenue thermique de la PCL. La dispersion des nanocharges et leurs effets sur la miscibilité a fait l’objet de la dernière partie consacrée aux matériaux à base du mélange immiscible PLA/PCL. Des propriétés viscoélastiques très intéressantes ont été obtenues après l’incorporation des mélanges OMMT/Gr, indiquant l’existence d’un bon niveau de distribution des renforts dans la matrice PLA/PCL. La synergie existante entre les nanocharges OMMT et graphène fonctionnalisé époxy a conduit à l’amélioration des propriétés barrières, de la stabilité thermique et de la miscibilité de la matrice. / The work carried out during this thesis highlights the effect of different kinds of organophilic clays OMMT (Cloisite®15A and Cloisite®30B) and/or epoxy functionalized graphene (Gr) on the functional properties of biodegradable polylactic acid (PLA), poly (ε-caprolactone) (PCL) and their mixture PLA/PCL (70/30 mass%). The first part is devoted to study the binary mixtures (PLA/Cloisite® and PLA/Gr) and ternary materials (PLA/Cloisite®/Gr) prepared via melt blending method. The combination of the two fillers (OMMT and Gr) improves all the rheological parameters of the PLA matrix and contributes to the appearance of a pseudo-solid viscoelastic behavior for PLA/Gr composites in the presence of clays, attributed to the better dispersion confirmed by transmission electron microscopy. The water vapor permeability, thermal and thermomechanical properties of PLA have been significantly improved, especially in the presence of hybrids OMMT/Gr and show the great interest of PLA/Cloisite®/Gr ternary nanobiocomposites in several applications. The second part is related to nanocomposite materials based on the biodegradable PCL matrix. The rheological study confirms the advantage of combining the organomodified clays and graphene nanofillers, and indicates the presence of tridimensional networks in the binary nanocomposites PCL/OMMT and PCL/OMMT/Gr. The good state of dispersion of the hybrids nanofillers (OMMT + Gr) has considerably improved the water vapor permeability and the thermal resistance of the PCL matrix. The dispersability of the nanofillers and their effect on the miscibility were the subject of the last part devoted to the PLA/PCL immiscible blend. Very interesting viscoelastic properties were obtained after the incorporation of the OMMT/Gr mixtures, indicating the existence of good level of distribution of nanofillers in the PLA/PCL matrix. The synergy between the OMMT and epoxy functionalized graphene led to the best improvement in term of barrier properties, thermal stability and compatibility of the matrix.
3

Étude des scénarios de fin de vie des biocomposites : vieillissement et retransformation de biocomposites PP/farine de bois et PLA/fibres de lin / Study of biocomposite end-of-life scenarios

Soccalingame, Lata 09 December 2014 (has links)
Les matériaux biocomposites, en particulier les composites matrice thermoplastique biosourcée ou non renforcée de charges ou de fibres végétales, connaissent actuellement un essor significatif et présentent pour l'avenir un gisement grandissant de matières en fin de vie. En conséquence, l'étude du comportement de ces matériaux au regard de différents scénarios de fin de vie que sont le recyclage mécanique, le compostage et l'incinération constitue un enjeu scientifique et technologique important. Le premier objectif de cette thèse est d'étudier la fin de vie par retransformation (cycles successifs d'injection et de broyage) de biocomposites à matrice polypropylène (PP) chargé de farine de bois. L'impact de la taille des particules de bois et d'un agent de couplage a été évalué. Une très bonne stabilité mécanique jusqu'à 7 cycles de retransformation a été observée malgré des dégradations des différents composants du matériau. Le comportement face à la retransformation après vieillissement artificiel accéléré ou après une exposition naturelle en extérieur a été étudié. La tendance majeure dégagée est un phénomène de « régénération » des propriétés mécaniques par retransformation, et cela malgré des dégradations importantes après vieillissement. Il a été également été observé que l'ajout de bois a tendance à limiter la photodégradation du PP. Le second objectif est d'étudier la fin de vie de biocomposites à matrice acide polylactique (PLA) renforcé de fibres de lin. L'impact de différents paramètres de formulation, de la technique de mise en œuvre et d'un vieillissement hygrothermique sur la retransformation de ces matériaux a été évalué. Les mêmes phénomènes de « régénération » sont observés, ce qui montre l'effet bénéfique de la retransformation. La fin de vie par compostage et par biodégradation est traitée. Des mesures d'énergies de combustion ont enfin permis d'estimer le potentiel de valorisation par incinération qui serait en lien avec le niveau de dégradation du PLA. / Nowadays, biocomposite materials are booming and will be a growing end-of-life issue for the future. They are based on a thermoplastic matrix (oil-based or bio-based) reinforced with vegetable fillers or fibers. Consequently, the study of their end of life through recycling, composting and incineration is a scientific and technologic challenge.The first goal of this thesis is to study the reprocessing end of life (successive injection and grinding cycles) of polypropylene (PP) based biocomposites filled with wood flour. The impact of the wood particle size and a coupling agent was assessed. Thus, a very good mechanical stability was observed up to 7 reprocessing cycles despite some degradation from the material components. Then, the reprocessing after artificial or natural UV weathering was carried out. The major trend is a “regeneration” phenomenon of mechanical properties after reprocessing in spite of strong degradations after UV weathering. Moreover, the addition of wood filler tends to restrain the PP photochemical degradation.The second goal is to study the end of life of polylactic acid (PLA) based biocomposites reinforced with flax fibers. The impact of the composition, the processing technic and humidity weathering on the reprocessing was assessed. Similar “regeneration” phenomena were observed leading to conclude to the beneficial effect of reprocessing. Then composting and biodegradation aspects were investigated. Heat release rate measurements enabled to estimate the incineration potential which could be linked to the PLA degradation rate.
4

Elaboration et caractérisation d'un biomatériau bioactif et résorbable à base de polylactide et de verre bioactif / Elaboration and characterization of a bioactive and bioresorbable biomaterial made with a polylactic acid and a bioactive glass

Perrin, Eloïse 22 November 2017 (has links)
Cette étude porte sur le développement et la caractérisation d’un biomatériau d’ostéosynthèse bioactif, biorésorbable et présentant une tenue mécanique la plus élevée possible. Il a pour vocation de favoriser la repousse osseuse tout en remplaçant temporairement les fonctions mécaniques de l’os. Le matériau, élaboré à base d’un polyacide lactique et de verre bioactif, doit pouvoir être transformé par injection moulage de manière à obtenir des formes complexes de petites tailles telles que des vis, des ancres ou des plaques d’ostéosynthèse. Le bioverre permet au matériau de se lier facilement à l’os tandis que le polyacide lactique apporte des propriétés mécaniques essentielles pour des applications impliquant des contraintes et l’aptitude à la mise en oeuvre. Des biocomposites à base du bioverre 45S5 existent déjà mais leurs applications sont limitées du fait d’interactions bioverre/polymères partiellement incomprises qui provoquent une stabilité thermique très faible. Un contrôle systématique de la dégradation thermique des matériaux a permis d’établir la matrice polymère, le procédé d’élaboration composite et la granulométrie du bioverre optimaux pour l’obtention d’un composite de référence à base de 45S5. Par la suite, le suivi in vitro de composites élaborés à partir de nouveaux bioverres a permis de mieux comprendre l’influence de la composition des bio-verres ainsi que les interactions polymère/bioverre. Ces essais ont permis d’identifier une nouvelle formulation permettant d’allier bioactivité (formation d’hydroxyapatite au bout de 15 jours dans du SBF) et dégradation in vitro minimisée. Cette formulation a présenté des propriétés thermiques et rhéologiques similaires à celle du polymère permettant une mise en forme de petites pièces par injection moulage bien plus aisée qu’avec le composite 45S5. En outre, au bout de 4 mois d’immersion in vitro dans du PBS, les propriétés mécaniques en traction de ce matériau s’approchent de celles du polymère et sont largement supérieures à celles du composite à base de 45S5. / The elaboration and characterization of a bioresorbable and bioactive biomaterial with mechanical properties as high as possible for osteosynthesis applications is the purpose of this study. This biomaterial must promote bone healing while replacing temporarily its mechanical functions. It is made with a polylactic acid and a bioactive glass and it must be easy to process through plasturgy methods in order to obtain small complex shapes as screws, anchors or osteosynthesis plates. The bioactive glass enhances the bioactivity of the material allowing it to link with the bone and the polylactic acid brings good mechanical properties essential to the applications that imply stress support and process aptitude. Biocomposites elaborated with 45S5 bioactive glass already exist but their applications are limited because of poorly understood bioactive glass/polymer interactions implying a weak thermal stability. A systematic control of the thermal degradation of the materials allows to define the best polymer matrix, composite elaboration process and bioactive glass granulometry to obtain an optimized 45S5 composite which stands for reference composite. Then, the in vitro follow-up of composites made with new bioactive glasses enhances the comprehension of the influence of the composition of the bioac-tive glass as well as the polymer/bioactive glass interactions. Hence, a new optimal formulation was identified. This formulation showed bioactivity (hydroxyapatite formation after 15 days in SBF) and a minimized in vitro degradation. Moreover, it showed thermal and rheological properties similar to neat polymer’s, which allows the thermomanufacturing of small pieces easierly than with the 45S5 composite. Plus, after an in vitro degradation in PBS of 4 months, its tensile properties were close to polymers’ and largely superior to 45S5 composite’s.
5

Mélanges de polymères à base de poly(Acide lactique) : relation structure/rhéologie/procédés de mise en forme

Al-Itry, Racha 27 November 2012 (has links) (PDF)
Ce travail de thèse porte sur l'étude des relations structure/procédés de mise en forme/propriétés finales de matériaux polymères à base de PLA/PBAT. Ces derniers sont destinés à l'emballage alimentaire en vue de remplacer le polyéthylène téréphtalate (PET). Cependant le PLA a certaines limites de processabilité par les technologies de la plasturgie. Le renforcement de ses propriétés à l'état fondu a été obtenu grâce à l'introduction d'un époxyde multifonctionnel capable de réagir avec les bouts de chaînes des polyesters. Aussi, des mélanges à base de PLA/PBAT ont été mis en œuvre en vue de conférer la ductilité au matériau final. La première étape consiste en la compréhension des mécanismes de dégradation thermique et hydrolytique des deux polymères PLA et PBAT au cours des processus de mise en œuvre. En effet, la réaction d'extension des chaînes couplée au branchement induits par l'époxyde multifonctionnel palie cette dégradation. Les mécanismes d'extension de chaînes et de branchements sous-jacents ont été mis en évidence par l'analyse des énergies d'activation, des spectres de relaxation à l'état fondu ainsi que celle des grandeurs physico-chimiques en solution. En outre, les représentations de Van-Gurp-Palmen confirment la co-existence de chaînes macromoléculaires linéaires et aléatoirement branchées. La seconde étape de ce travail a été dédiée à la compatibilisation des mélanges PLA/PBAT par ce même époxyde multifonctionnel. Des études expérimentales modèles basées sur la détermination de la tension interfaciale et la modélisation rhéologique ont montré le rôle majeur de compatibilisant induit par cet agent réactif. Ainsi, la diminution de la tension interfaciale confère à ces matériaux une meilleure cohésion interfaciale et une morphologie fine et homogène de la phase dispersée, accompagnée par l'amélioration des propriétés mécaniques. L'étude des propriétés rhéologiques en cisaillement et en élongation des matériaux modifiés a permis de montrer une meilleure tenue mécanique à l'état fondu. Ainsi, une meilleure aptitude à l'extrusion gonflage a été démontrée en élargissant leurs cartes de stabilité. Parallèlement à ces travaux, des études de bi-étirage des polymères seuls, de leurs homologues modifiés et de leurs mélanges montrent un durcissement structural, dû à la cristallisation induite sous déformation. Les morphologies cristallines ont été analysées finement par des méthodes calorimétriques et spectroscopiques. Enfin, ces études ont été transposées à l'élaboration et à la compréhension des comportements d'une formulation industrielle complexe à base de PLA, PBAT et de farine céréalière plastifiée.
6

Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse

Ginsac, Nathalie 24 February 2011 (has links) (PDF)
Ce travail de thèse porte sur la caractérisation d'un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d'apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l'ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d'élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d'adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l'effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d'autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées.
7

Caractérisation de matériaux composite polyacide lactique-bioverre pour application dans la réparation osseuse / Characterization of polylactic acid- Bioglass® composites for bone repair applications

Ginsac, Nathalie 24 February 2011 (has links)
Ce travail de thèse porte sur la caractérisation d’un matériau composite polyacide lactique-bioverre pour application comme dispositif de réparation osseuse. Le bioverre étant trop fragile pour être utilisé seul comme dispositif de réparation osseuse, celui-ci est associé à une matrice polymère résorbable permettant d’apporter le caractère bioactif à des matériaux pouvant être mis en forme par des procédés de plasturgie. Le matériau composite polyacide lactique-bioverre est ainsi mis en forme par injection à partir de granules élaborés par voie solvant. La caractérisation des propriétés de ce matériau composite a révélé une augmentation du module élastique avec l’ajout de charges, mais une diminution des contraintes maximales admissibles et de la déformation à la rupture. Les modifications des propriétés mécaniques ont été associées à une modification des propriétés de la matrice et notamment de sa masse moléculaire. Un autre mode d’élaboration par pressage à chaud a permis de limiter la dégradation du polymère. Une meilleure maitrise de la masse moléculaire du composite serait ainsi un moyen de contrôler sa cinétique de dégradation in vivo et ainsi d’adapter ses propriétés en fonction du cahier des charges des applications visées. Dans une seconde partie, l’effet du taux de bioverre sur le caractère bioactif du composite a été évalué par immersion dans un fluide biologique de composites chargés à 20, 30 et 50% (en masse de bioverre). Un scénario de cristallisation à la surface des différents composites a ainsi été proposé. Tous les composites se sont révélés bioactifs et d’autant plus que le taux de bioverre est élevé. Le composite chargé à 50% apparait ainsi comme le matériau le plus bioactif, mais sa vitesse de dégradation est très rapide. Ce matériau étant destiné à être implanté, une étude de biocompatibilité in vitro a été menée par culture de cellules ostéoblastiques à la surface des matériaux. Enfin la biocompatibilité du composite in vivo, son caractère biorésorbable et ostéoconducteur ont été évalués par implantation du matériau composite dans les tissus musculaires et osseux de lapins. Le caractère biocompatible, bioactif et ostéoconducteur du composite chargé à 30% en masse de bioverre en fait un candidat de choix pour les applications proposées. / The aim of this work was to evaluate polylactic acid- Bioglass® composites for bone repair applications. Bioglass being too brittle to be used alone for load bearing applications, our strategy was to incorporate bioactive Bioglass® particles into a bioresorbable polymer matrix processed by conventional manufacturing techniques. The composite were processed by injection moulding from granules prepared by a solvent route. The composites exhibit higher Young modulus but lower strength and strain to failure than polymer alone. This is attributed to a decrease of molecular weight of the polymer matrix during the different steps of the process. Another processing method (hot pressing) was used to limit the drop in molecular weight of the polymer matrix: it leads to higher mechanical properties. Therefore, a careful control of the Polymer degradation may insure better mechanical properties and a better control of the degradation rate in vivo. The bioactivity of composites with 20, 30, 50 Wt. % of Bioglass® was a assessed by immersion in simulated body fluid. All the composites are bioactive, and all the more since the Bioglass® content is large. On the other side, the degradation of composites with a Bioglass® content of 50 wt. % is very rapid. Biological evaluation was conducted in vitro and in vivo. Osteoblast cell cultures and in vivo evaluation in rabbits demonstrate that polylactic acid - Bioglass® composites are biocompatible and osteoconductive. Such composites may therefore be a good option for bone repair applications in the future.
8

Etude de la mise en oeuvre de l'acide poly (lactique) par le procédé d'extrusion film : Relation structure-procédé / Study of poly (lactic acid) casting film process : Structure-process relationship

Houichi Mani, Hikmet 25 March 2016 (has links)
Cette thèse présente une contribution originale à la compréhension et la maîtrise des mécanismes physico-chimiques qui contrôlent la mise en œuvre de l’acide poly (lactique) par le procédé d’extrusion film. Le premier chapitre de ce mémoire est consacré à une étude bibliographique sur les différents développements réalisés autour du PLA. Dans le chapitre 2, nous avons étudié le processus de cristallisation et la morphologie sphérulitique du PLA induite par le procédé d’extrusion film ainsi que l’effet de l’étirage à chaud sur les propriétés thermique du PLA. Dans le chapitre 3, le poly (éthylène glycol) a été utilisé pour améliorer la mise en oeuvre, la flexibilité et la ductilité des films de PLA. Aussi, la morphologie cristalline a été étudiée à l'aide de POM. En outre, nous avons montré que le taux de cristallisation du PLA plastifié a également contrôlé ses propriétés viscoélastiques et ses performances mécaniques finales. / This thesis presents an original contribution to the understanding of physico-chemical mechanisms that control poly (lactic acid) casting film process. Firstly, A novel way using a polarized optical microscopy and statistical image analysis techniques for direct investigation of the crystallization kinetics and spherulitic morphology of poly (lactic acid) induced by casting process has been proposed as well as the effect of drawing in thermal properties of PLA. Secondly, poly (ethylene glycol) was used to improve process ability, flexibility and ductility of PLA casting films. Overall, we found that the crystallization rate of plasticized PLA has controlled its viscoelastic properties and final mechanical performance.
9

Mélanges de polymères à base de poly(Acide lactique) : relation structure/rhéologie/procédés de mise en forme / Blends based on poly(lactic acid) : structure/rheology/processing relationship

Al-Itry, Racha 27 November 2012 (has links)
Ce travail de thèse porte sur l’étude des relations structure/procédés de mise en forme/propriétés finales de matériaux polymères à base de PLA/PBAT. Ces derniers sont destinés à l’emballage alimentaire en vue de remplacer le polyéthylène téréphtalate (PET). Cependant le PLA a certaines limites de processabilité par les technologies de la plasturgie. Le renforcement de ses propriétés à l’état fondu a été obtenu grâce à l’introduction d’un époxyde multifonctionnel capable de réagir avec les bouts de chaînes des polyesters. Aussi, des mélanges à base de PLA/PBAT ont été mis en œuvre en vue de conférer la ductilité au matériau final. La première étape consiste en la compréhension des mécanismes de dégradation thermique et hydrolytique des deux polymères PLA et PBAT au cours des processus de mise en œuvre. En effet, la réaction d’extension des chaînes couplée au branchement induits par l’époxyde multifonctionnel palie cette dégradation. Les mécanismes d’extension de chaînes et de branchements sous-jacents ont été mis en évidence par l’analyse des énergies d’activation, des spectres de relaxation à l’état fondu ainsi que celle des grandeurs physico-chimiques en solution. En outre, les représentations de Van-Gurp-Palmen confirment la co-existence de chaînes macromoléculaires linéaires et aléatoirement branchées. La seconde étape de ce travail a été dédiée à la compatibilisation des mélanges PLA/PBAT par ce même époxyde multifonctionnel. Des études expérimentales modèles basées sur la détermination de la tension interfaciale et la modélisation rhéologique ont montré le rôle majeur de compatibilisant induit par cet agent réactif. Ainsi, la diminution de la tension interfaciale confère à ces matériaux une meilleure cohésion interfaciale et une morphologie fine et homogène de la phase dispersée, accompagnée par l’amélioration des propriétés mécaniques. L’étude des propriétés rhéologiques en cisaillement et en élongation des matériaux modifiés a permis de montrer une meilleure tenue mécanique à l’état fondu. Ainsi, une meilleure aptitude à l’extrusion gonflage a été démontrée en élargissant leurs cartes de stabilité. Parallèlement à ces travaux, des études de bi-étirage des polymères seuls, de leurs homologues modifiés et de leurs mélanges montrent un durcissement structural, dû à la cristallisation induite sous déformation. Les morphologies cristallines ont été analysées finement par des méthodes calorimétriques et spectroscopiques. Enfin, ces études ont été transposées à l’élaboration et à la compréhension des comportements d’une formulation industrielle complexe à base de PLA, PBAT et de farine céréalière plastifiée. / The ultimate aim of the present thesis focuses on the structure/processing/properties relationship of the PLA/PBAT materials. The latters are intended for food packaging in order to replace poly (ethylene terephthalate (PET). However, PLA has a limited processability in conventional technologies of plastics industry. The strengthening of its melt properties has been achieved through the incorporation of a multifunctional epoxide, able to react with the end chains of polyesters. Furthermore, PLA/PBAT blends were prepared to make the final material more ductile. The first part of the study consists on the understanding of thermal and hydrolytic degradation mechanisms of neat PLA and PBAT polymers upon processing. Indeed, the degradation was overcome through the chain extension reaction coupled to branching, induced by the multifunctional epoxide. The chain extension and branching mechanisms were highlighted by the analysis of the activation energy and the relaxation spectra in the molten state as well as the physico-chemical properties in solution. Moreover, the Van-Gurp-Palmen plots confirm the co-existence of linear and randomly branched macromolecular chains. The second part has been dedicated to the compatibilization of PLA/PBAT blends by the multifunctional epoxide. Experimental models studies, based on the assessment of the interfacial tension, and the rheological modeling showed the major role of the reactive epoxide agent as a compatibilizer. Thus, the decrease of the interfacial tension gives a better cohesive interface with finer and homogenous morphology of the dispersed phase, accompanied with an improvement of the mechanical properties. The study of the shear and elongation rheological properties of modified materials showed an enhancement of their melt strength. Therefore, a better ability to be blown has been demonstrated, by expanding their stability maps. Besides, biaxial stretching studies of neat polymers, their modified counterparts as well as their blends show a structural strain hardening, due to a strain-induced crystallization. The crystalline phases were analyzed thanks to calorimetric and spectroscopic methods. Finally, the present studies have been used to elaborate and understand the behavior of a complex industrial formulation based on PLA, PBAT and thermoplastic cereal flour.
10

Mise en oeuvre de biocomposites Poly(acide lactique)/Bioverres : Relation structure/ rhéologie/procédés de mise en forme / Biocomposites based on poly(lactic acid) and bioglass® fillers : Processing rheological and mechanical properties

Dergham, Nora 12 September 2014 (has links)
Le travail présenté porte sur la rhéologie, la mise en forme et la caractérisation de matériaux biocomposites de nouvelles générations pour des applications orthopédiques. Dans le cadre de cette étude, des biocomposites poly (D,L-lactide) (PDLLA)/bioverres ont été élaborés par extrusion bivis sous atmosphère inerte. Les bioverres différent par la nature de leur traitement thermique et leur morphologie. La première partie a été consacrée à l’étude de l’état de la dispersion des bioverres dans la matrice polymère. Nous avons montré que l’homogénéité de cette dispersion dépend, d’une part de la structure, de la morphologie, du taux volumique des charges et d’autre part des paramètres du procédé (cisaillement, température,…). Le comportement rhéologique des suspensions a été étudié à l’état fondu ainsi qu’à l’état solide. Un accent particulier a été porté sur l’étude de l’influence du taux des bioverres, de leur taille moyenne et plus particulièrement de leur traitement thermique. Les masses molaires de PDLLA extrait des composites élaborés ont été évaluées par chromatographie d’exclusion stérique (CES). Enfin, la qualité de la dispersion des charges, en termes de distance inter-particulaire et taille moyenne, a été étudiée par microscopie électronique à balayage (MEB) et analyses d’image. Il a été montré que l’utilisation de bioverres non traités thermiquement lors de la mise en forme de composites à haute température provoque la dégradation de la matrice. Aussi, on assiste à une réduction des masses molaires. Les propriétés viscoélastiques et les propriétés mécaniques sont altérées à leur tour. Cette dégradation a été étudiée par spectroscopie infrarouge (IRTF) et par analyse thermogravimétrique (ATG). Les origines et mécanismes sous-jacents de cette dégradation ont été proposés. Il est démontré pour la première fois que la présente dégradation du PDLLA peut être atténuée par l’emploi de différentes charges céramiques à propriétés spécifiques. En outre, l’utilisation de ces bioverres a permis l’obtention d’une dispersion homogène au sein de la matrice. L’analyse des propriétés rhéologiques de tels matériaux et leur modélisation a permis de mettre en évidence les interactions matrice-charges. La deuxième partie de l’étude a porté sur l’élaboration des biocomposites multicouches à gradient de propriétés par coextrusion. Ces multicouches présentent, d’une part, des propriétés variables selon le type de traitement et de composition du bioverre actif. D’autre part, le gradient de propriété a été également réalisé en faisant varier les paramètres expérimentaux relatifs au procédé de coextrusion. Les matériaux finaux, ainsi obtenus, présentent de très bonnes propriétés cohésives avec une bioactivité maîtrisée et contrôlée. / Bioactive and biodegradable composites have gained increasing importance in the orthopedic field as bone replacement materials and as scaffolds for tissue engineering. In this study, biocomposites based on poly(D,L-lactide) (PDLLA) and bioactive glass fillers were prepared by a twin screw extrusion under Argon inert gas with various filler contents, thermal treatments and particle sizes. The processing conditions were monitored to produce composites with well controlled physico-chemical, mechanical and dispersive properties. The aim of the present work is to gain a fundamental understanding of the relationships between structure, processing conditions and final properties of these biocomposites. The dispersion state of fillers was characterized by SEM. It was highlighted that the inclusion of non treated bioglass in PDLLA under elevated temperatures resulted in a decrease of molar mass. This degradation of the matrix leads to a reduction of the viscoelastic and mechanical properties of the composites. The origin and mechanisms of this degradation were probed using a Fourier Transform Infrared (FTIR) spectroscopy. The optimization of their processing allows a better control of this drastic loss of properties. Furthermore, the demonstration had been done that the present degradation of PDLLA matrix can be attenuated using a different glass ceramics with a special size and thermally treated. The rheological behaviour in linear and non linear viscoelasticity of the controlled PDLLA/BG suspensions has been assessed in both solid and molten state. Hence, their experimental rheological behaviour was compared to the theoretical suspension models. Finally, the effects of volume fraction, particle size and thermal treatment on the mechanical properties have been also investigated and discussed. The obtained results corroborate the rheological and physic-chemical ones. Finally, the multilayer structures with various amounts and treatments of BG fillers were obtained by a designed scale lab coextrusion machines. The gradient of properties has been obtained and improved cohesion properties between the neighboring were highlighted. Their bioactivity was finally demonstrated. At last, no residual stress inside the multilayers can be observed. This observation explains the conservation of the initial shape of those implants, without nor deformation neither relaxation, during the simulation of the chirurgical implantation in SBF.

Page generated in 0.4375 seconds