• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification des propriétés mécaniques de matériaux composites par analyse vibratoire

Dupuy, Jean-Sébastien 11 December 2008 (has links) (PDF)
Les performances mécaniques des matériaux composites dépendent non seulement des caractéristiques des charges et matrice utilisées,mais aussi de la qualité de l'interface entre constituants. Ainsi, une mauvaise adhésion interfaciale entraîne généralement une dégradation du comportement du composite, qui peut être assimilée à un endommagement global pour le matériau. Le but de cette étude est de proposer un moyen de caractérisation rapide de l'endommagement de matériaux à partir d'analyses mécaniques vibratoires. En effet, une mauvaise cohésion au sein du matériau peut conduire à des phénomènes de friction qui tendent à augmenter le niveau d'amortissement de sa réponse dynamique. Plusieurs techniques expérimentales, dont certaines reposent sur l'analyse des fréquences de résonance de la structure, sont présentées dans cette étude. Les propriétés viscoélastiques de matériaux composites particulaires à matrice polymère sont ainsi analysées. Certains paramètres d'élaboration de ces matériaux modèles ont été ajustés afin de créer des niveaux d'endommagement différents mais contrôlable. Les résultats obtenus, en particulier en ce qui concerne le facteur de perte, sont interprétés sur la base d'une comparaison avec des modèles analytiques simples d'homogénéisation.
2

Modélisation et caractérisation de l'interaction fluide-structure lors de la mise en oeuvre d'un matériau composite par infusion sous vide / Modeling and characterization of hydro-mechanical coupling within a deformable fibrous medium during the composite material manufacturing by vacuum infusion process

Zénone, Claire-Isabelle 27 June 2019 (has links)
Cette thèse fait l’objet du développement d’un modèle numérique de la phase d’imprégnation d’une préforme lors du procédé de fabrication d’un matériau composite par infusion sous vide de type VARI (Vacuum Assisted Resin Infusion). La caractérisation in situ du comportement mécanique dans l’épaisseur d’une préforme (essais d’infusion réels) est confrontée à sa caractérisation ex situ par une machine de traction/compression. L’effet de différents paramètres est mis en valeur sur le comportement de la préforme (type de chargement appliqué, état de saturation, influence de la viscosité du fluide et de la vitesse de déformation). Les essais ont révélé le caractère viscoélastique d’un renfort de type tissé lors de sa décompression à l’état imprégné et ont permis la définition d’une loi de comportement viscoélastique non-linéaire du renfort lors de cette phase. En vue d’étendre l’usage de cette loi de comportement mécanique à une large gamme de renforts, la même démarche expérimentale est appliquée au cas d’un renfort de type mat, au comportement élastique non-linéaire. La forme générale de la loi de comportement proposée se veut être adaptée à la description des deux types de renforts testés, où les éventuels effets viscoélastiques sont pris en compte selon le renfort étudié. Suite à l’implantation de la nouvelle loi de comportement dans un code numérique dédié à la simulation de la phase de remplissage d’un moule, la comparaison entre les résultats numériques et ceux des essais d’infusion sous vide prouve la fiabilité de ce nouveau modèle pour ces deux renforts à l’architecture bien distincte. / This thesis focuses on the development of a numerical model for the preform impregnation during the VARI (Vacuum Assisted Resin Infusion) process for the manufacturing of a composite material. The in situ characterization of the mechanical behavior in the thickness direction of a preform (real infusion tests) was compared with an ex situ characterization by a universal testing machine. The preform behavior was characterized for different parameters such as loading type, saturation state, influence of fluid viscosity and strain rate. All the tests revealed the viscoelastic behavior of a woven fabric during its decompression in the impregnated state, leading to the definition of a non-linear viscoelastic constitutive law of the woven fabric during this phase. To extend the use of this mechanical constitutive law to a wide range of fabrics, the same experimental approach was applied to the case of a random mat fabric with non-linear elastic behavior. The generalized form of the constitutive law is adapted to the description of the two types of fabrics while the potential viscoelastic effects are taken into account according to the fabric type. After the implementation of the new constitutive law in a numerical code for the simulation of a mold filling process, the comparison between numerical and experimental results has proved the reliability of the new numerical model for these two reinforcements with distinct architectures.
3

Identification du comportement quasi-statique et dynamique de la mousse de polyuérathane au travers de modèles de mémoire

Jmal, Hamdi 25 September 2012 (has links) (PDF)
La mousse de polyuréthane est un matériau cellulaire caractérisé par un spectre de propriétés mécaniques intéressant : une faible densité, une capacité à absorber l'énergie de déformation et une faible raideur.Elle présente également des propriétés telles qu'une excellente isolation thermique et acoustique, une forte absorption des liquides et une diffusion complexe de la lumière. Ce spectre de propriétés fait de la mousse de polyuréthane un des matériaux couramment utilisés dans de nombreuses applications phoniques, thermiques et de confort. Pour contrôler la vibration transmise aux occupants des sièges, plusieurs dispositifs automatiques de régulation et de contrôle sont actuellement en cours de développement tels que les amortisseurs actifs et semi-actifs. La performance de ces derniers dépend bien évidemment de la prédiction des comportements de tous les composants du siège et en particulier la mousse. D'une façon générale, il est indispensable de modéliser le comportement mécanique complexe de la mousse de polyuréthane et d'identifier ses propriétés quasi-statique et dynamiques afin d'optimiser la conception des systèmes incluant la mousse en particulier l'optimisation de l'aspect confort. Dans cette optique, l'objectif principal de cette thèse consiste à implémenter des modèles mécaniques de la mousse de polyuréthane fiables et capables de prévoir sa réponse sous différentes conditions d'essais. Dans la littérature, on retrouve les divers modèles développés tels que les modèles de mémoire entier et fractionnaire. L'inconvénient majeur de ces modèles est lié à la dépendance de leurs paramètres vis-à-vis des conditions d'essais, chose qui affecte le caractère général de leur représentativité des comportements quasi-statique et dynamique de la mousse polyuréthane. Pour pallier à cet inconvénient, nous avons développé des modèles qui, grâce à des choix judicieux de méthodes d'identification, assurent une représentativité plus générale des comportements quasi-statique et dynamique de la mousse polyuréthane. En effet, nous avons démontré qu'on peut exprimer les paramètres dimensionnels des modèles développés par le produit de deux parties indépendantes ; une regroupant les conditions d'essais et une autre définissant les paramètres adimensionnels et invariants qui caractérisent le matériau. Ces résultats ont été obtenus à partir de plusieurs études expérimentales qui ont permis l'appréhension du comportement quasi-statique (à travers des essais de compression unidirectionnelle) et dynamique (à travers des tests en vibration entretenue). La mousse, sous des grandes déformations, présente à la fois un comportement élastique non linéaire et un comportement viscoélastique. En outre, une discrimination entre les modèles développés particulièrement en quasi-statique a été effectuée. Les avantages et les limites de chacun y ont été discutés.
4

Modélisation du comportement des composites à fibres courtes non-alignées en dynamique / Constitutive behaviour modelling of short fibre reinforced composites under dynamic loading

Nciri, Mariem 11 May 2017 (has links)
L’utilisation de composites à matrice thermoplastique renforcée par fibres courtes (TRFC) connait une forte croissance pour une large gamme d’applications industrielles pour des conditions de chargement extrêmes (e.g. pare-chocs d’automobiles). Il est donc indispensable de développer des modèles de comportement des TRFC tenant compte des spécificités du matériau pour une large gamme de vitesse de déformation. Toutefois, le comportement de ces composites est complexe. Cette complexité est due, en premier lieu, au comportement viscoélastique (VE)-viscoplastique (VP) de la matrice avec une sensibilité à la pression. A cela s’ajoute les caractéristiques complexes du renfort en termes de distributions d’orientation des fibres courtes. De plus, le comportement de ces composites est affecté par des phénomènes d’endommagement coexistants (e.g. endommagement de la matrice et décohésion l’interface fibre/matrice). Dans ce travail, un modèle permettant la prise en compte de l’ensemble de ces phénomènes est proposé. Sa formulation est basée sur la décomposition du matériau en un milieu matriciel et plusieurs milieux de fibres, sur la base d’une décomposition additive du potentiel thermodynamique. Cette approche permet une implémentation simplifiée avec une résolution successive (mais non indépendante) du comportement de chaque milieu. Un avantage immédiat est la possibilité de prendre en compte tout type de comportement matriciel et tout type d’orientation. L’interface fibre/matrice, siège de la transmission de l’effort est modélisée par un transfert par cisaillement, avec sur une hypothèse locale d’iso-déformation dans la direction de la fibre. L’endommagement ductile de la matrice est pris en compte par un modèle d’endommagement anisotrope. La dégradation de l’interface fibre/matrice est décrite par un modèle de décohésion initiée en pointe de fibres. Un critère de rupture se basant sur le taux maximal de vide crée par décohésion est enfin introduit. La caractérisation du modèle est basée sur des campagnes d’essais quasi-statiques et dynamiques pour le cas de polypropylène pur et renforcé par fibres courtes de verre, à différents angles de chargement par rapport à la direction d’injection. Ces essais sont complétés par des observations au microtomographe permettant la caractérisation des distributions d’orientation locale des fibres. Des observations au MEB ont enfin permis de constater une éventuelle influence de la vitesse de sollicitation sur les mécanismes d’endommagement. / Short fibre-reinforced composites are commonly used in a variety of engineering applications, including automotive and aerospace industry. Today, their use is progressively extended to parts possibly subjected to severe loading conditions (e.g. crash...), characterised by high strain rates. Therefore, an efficient modelling that takes into account material’s specificities at a large strain rate range is needed. A constitutive model of viscous behaviour of short-fibre reinforced composites (SFRC) where complex distributions of fibre orientations are taken into account is proposed in this work. The approach considered for the computation of composite macroscopic behavior is based on an additive decomposition of the state potential. The SFRC is assimilated to an assembly of several fibre media embedded in a polymeric matrix medium. One of the main assets of this approach is the possibility to model reinforcement with complex distributions of fibre orientations. Moreover, this decomposition allows the implementation of complex behaviour laws coupled with damage models. The polymeric matrix behaviour is typically strain-rate sensitive, i.e. viscoelastic-viscoplastic. This property has to be taken into account when the modelling of the composite behaviour over a large range of strain rate is intended. Therefore, a viscoelastic constitutive model, based on generalised Maxwell model, and a viscoplastic correction scheme, based on an overstress approach, are implemented for matrix material. The developed constitutive model is then coupled to two damage laws. The first one is introduced in the framework of Continuum Damage Mechanics in order to model the anisotropic ductile damage behaviour of the matrix material. The second one deals with fibre/matrix interfacial degradation through an interfacial debonding law. In order to identify the parameters involved in the present model, experimental tests are performed (case of polypropylene reinforced with short glass fibres). Microcomputed tomography is used for the characterisation of the fibres distribution of orientation. The efficiency of the proposed model is demonstrated by comparisons between numerical and experimental responses in different loading conditions, including dynamic loadings.
5

Identification du comportement quasi-statique et dynamique de la mousse de polyuérathane au travers de modèles de mémoire / Identification of the quasi-static and dynamic behaviour of polyurethane foams through memory models

Jmal, Hamdi 25 September 2012 (has links)
La mousse de polyuréthane est un matériau cellulaire caractérisé par un spectre de propriétés mécaniques intéressant : une faible densité, une capacité à absorber l’énergie de déformation et une faible raideur.Elle présente également des propriétés telles qu’une excellente isolation thermique et acoustique, une forte absorption des liquides et une diffusion complexe de la lumière. Ce spectre de propriétés fait de la mousse de polyuréthane un des matériaux couramment utilisés dans de nombreuses applications phoniques, thermiques et de confort. Pour contrôler la vibration transmise aux occupants des sièges, plusieurs dispositifs automatiques de régulation et de contrôle sont actuellement en cours de développement tels que les amortisseurs actifs et semi-actifs. La performance de ces derniers dépend bien évidemment de la prédiction des comportements de tous les composants du siège et en particulier la mousse. D’une façon générale, il est indispensable de modéliser le comportement mécanique complexe de la mousse de polyuréthane et d’identifier ses propriétés quasi-statique et dynamiques afin d’optimiser la conception des systèmes incluant la mousse en particulier l’optimisation de l’aspect confort. Dans cette optique, l’objectif principal de cette thèse consiste à implémenter des modèles mécaniques de la mousse de polyuréthane fiables et capables de prévoir sa réponse sous différentes conditions d’essais. Dans la littérature, on retrouve les divers modèles développés tels que les modèles de mémoire entier et fractionnaire. L’inconvénient majeur de ces modèles est lié à la dépendance de leurs paramètres vis-à-vis des conditions d’essais, chose qui affecte le caractère général de leur représentativité des comportements quasi-statique et dynamique de la mousse polyuréthane. Pour pallier à cet inconvénient, nous avons développé des modèles qui, grâce à des choix judicieux de méthodes d’identification, assurent une représentativité plus générale des comportements quasi-statique et dynamique de la mousse polyuréthane. En effet, nous avons démontré qu’on peut exprimer les paramètres dimensionnels des modèles développés par le produit de deux parties indépendantes ; une regroupant les conditions d’essais et une autre définissant les paramètres adimensionnels et invariants qui caractérisent le matériau. Ces résultats ont été obtenus à partir de plusieurs études expérimentales qui ont permis l’appréhension du comportement quasi-statique (à travers des essais de compression unidirectionnelle) et dynamique (à travers des tests en vibration entretenue). La mousse, sous des grandes déformations, présente à la fois un comportement élastique non linéaire et un comportement viscoélastique. En outre, une discrimination entre les modèles développés particulièrement en quasi-statique a été effectuée. Les avantages et les limites de chacun y ont été discutés. / Polyurethane foam is a cellular material characterized by an interesting mechanical spectrum of properties: low density, capacity to absorb the deformation energy and low stiffness. It presents also several other properties, such as excellent thermal and acoustic insulation, high absorption of fluids and a complex scattering of light. This spectrum of properties makes polyurethane foam commonly used in many thermal, acoustic and comfort applications. To control the vibration transmitted to the seat occupants, several automatic devices for regulation and control are currently outstanding developments like active and semi-active dampers. The performance of these devices depends, of course, on the prediction of the behaviour of all the seat components and especially foam. Generally, it is essential to model the complex mechanical behaviour of polyurethane foam and identify its quasi-staticand dynamicproperties in order to optimize the design of systems with foam particularly the optimization of the comfort aspect. In this mind, the main goal of this thesis is to implement mechanical models of polyurethane foam reliable and able to provide its response under different test conditions. Several models has been developed in literature such as memory fractional and integer models. The main disadvantage of these models is the dependence of their parameters against the test conditions. It affects the general character of their representativeness to the quasi-static and dynamic behaviours of polyurethane foam. To solve this problem, we developed models with specific identification methods to ensure broader representation of the quasi-static and dynamic behaviour of polyurethane foam. Indeed, we have demonstrated that we can express the dimensional parameters of the developed models by the product of two independent parts; the first contain only the test conditions and the second define the dimensionless and invariant parameters that characterize the foam material. The developed models have been establish after several experimental studies allowing the apprehension of the quasi-static behaviour (through unidirectional compression tests) and the dynamic behaviour (through harmonic vibration tests). The polyurethane foam, under large deformations, exhibits a non linear elastic behaviour and viscoelastic behaviour. In addition, discrimination between the models developed especially in quasi-static case has been conducted. The advantages and limitations of each model have been discussed.
6

Contribution à la modélisation du comportement visco-hyper-élastique de mousses de polyuréthane : Validation expérimentale en quasi-statique / Contribution to visco-hyperelastic behavior modeling of polyurethane foams : Quasi-static experimental validation

Ju, Minglei 20 November 2014 (has links)
La mousse flexible de polyuréthane est couramment utilisée dans nombreuses applications telles que acoustiques, thermiques et de bâtiment grâce à sa faible densité et à son pouvoir d’isolation thermique et acoustique. Elle est également utilisée dans les applications de confort pour les sièges tels que véhicule, train, avion etc. grâce sa faible raideur et à son pouvoir à absorber l’énergie de déformation. Pour optimiser le confort des systèmes d’assise, il est nécessaire de modéliser le siège et en particulier la partie flexible, c’est-à-dire la mousse de polyuréthane. Les objectifs principaux de cette thèse consistent à identifier puis à modéliser le comportement quasi-statique de la mousse de polyuréthane sous différentes conditions d’essais sous grandes déformations. Des essais de compression/décompressions unidirectionnels monocycle et multicycle à différentes vitesses de déformations ont été réalisés sur trois types de mousse de polyuréthane, afin de comprendre le comportement du matériau. Ces essais ont permis de déduire que les mousses de polyuréthanes sous grandes déformations présentent à la fois un comportement hyperélastique et un comportement viscoélastique. Ils ont également montrés que les mousses de polyuréthanes présentent un phénomène d’assouplissement appelé ‘effet de Mullins’ lors que les essais de compression/décompressions multicycle, c’est-à-dire que les contraintes dans 1er cycle sont moins faibles que les contraintes dans les cycles suivants pour une même déformation. Sur la base des résultats d’expérimentaux et afin de modéliser le comportement quasi-statique de la mousse de polyuréthanne, nous avons développé trois modèles visco-hyperélastiques qui se composent de deux éléments à savoir la partie modèles énergétiques hyperélastiques, utilisés généralement pour des matériaux à comportement caoutchoutique, et la partie modèle à mémoire entier qui tient compte de l’historique et permettant de décrire le comportement viscoélastique. Les paramètres des modèles ont été identifiés en utilisant la méthode d’identification et la méthode d’optimisation appropriée. Les résultats des modélisations du comportement mécanique de la mousse sur les essais monocycles et multicycles ont été comparés aux résultats expérimentaux, monteront à la fois une très bonne capacité à simuler le 1er cycle de charge/décharge, ainsi que les cycles suivant. Nos modèles ont prouvé leur capacité à modéliser l’effet de Mullins sur les mousses de polyuréthane souple. Ces modèles ont été validés sur les trois types de mousse et pour trois vitesses de sollicitation, permettent de conclure leurs efficacités et de leurs représentativités. / Flexible polyurethane foam is widely used in numerous applications such as acoustic, thermal and building due to its low density and its ability to absorb thermal and acoustic energy. It is also used for the comfort of the seats such as the vehicle, train, plane due to its low stiffness and its ability to absorb deformation energy. In order to optimize the comfort of the car seat, it is necessary to model the behavior of seat system, particularly the flexible component - polyurethane foam. The main objective of this study is to identify and model the quasi-static behavior of polyurethane foam under different test conditions in large deformations. Compression / decompression uniaxial unicycle and multicycle tests were carried out on three types of polyurethane foam at different strain rates, which allows us to understand the behavior of the material. The results of the tests indicate that the polyurethane foams exhibit a hyperelastic behavior and a viscoelastic behavior under large deformations. They also showed that the polyurethane foams have a stress softening phenomenon which is called 'Mullins effect' during the compression / decompression multicycle tests. In other words, the stress in first cycle is lower than the stresses in the subsequent cycles in the same deformation. ‘Mullins effect’ for the polyurethane foam is also an important study in this dissertation. Based on the experimental results and the goal of modeling quasi-static behavior of the polyurethane foam, three visco-hyperelastic models were developed. These models consist in two elements: hyperelastic models, which is normally used for description the behavior of rubber materials, and entire memory model which takes into account the history and describing the viscoelastic behavior. Model parameters were identified using appropriate identification and optimization methods. The results of modeling the mechanical behavior of the foam on the unicycle and multicycle tests were compared with experimental results. The models showed a very good competence to simulate the first cycle and the following cycles during the charge / discharge tests. Our models have proven its ability to model Mullins effect on flexible polyurethane foams. These models have been validated on three types of foam in order to present a comparative study of their effectiveness and their representativeness.
7

Analyse et simulation de la déformation de films polymères de décoration au cours de leur mise en forme / Analysis and simulation of the deformation of polymer films of decoration during forming process

Ahmad, Daniel 20 November 2013 (has links)
La simulation de la mise en forme des films polymères de décoration par le procédé de thermoformage a plusieurs objectifs. Elle permet de déterminer la faisabilité, ou les conditions de cette faisabilité et surtout elle permet de résoudre les nombreuses problématiques concernant la maîtrise des propriétés finales du film de décoration, telles que sa distribution d'épaisseur. Les simulations évitent les coûteuses études expérimentales par essais-erreurs. Le travail présenté dans ce document concerne les deux étapes principales de la mise en forme des films polymères par thermoformage, à savoir, l’étape de chauffage thermique par infrarouge et l’étape dite de formage. Les apports de ce travail sont les suivants : le développement d’une loi de comportement viscoélastique isotrope non isotherme, permettant de décrire le comportement mécanique du film polymère au cours de sa déformation. La simulation de l’étape de chauffage infrarouge permettant la mise en forme des films polymères à la température calculée par la prise en compte de la loi de comportement mécanique proposée. Enfin, un ensemble de simulations de mise en forme ont été réalisés et validés par comparaison avec des essais expérimentaux. / The simulation of the forming process of polymer films for thermoforming process has several objectives. It allows to determine feasibility or the conditions of this feasibility and above all it allows to know the thickness distribution of the deformed film of decoration. Simulations avoid the expensive experimental studies by test-errors. The work presented in this document relates to the two steps of the thermoforming of polymer films. The first step consists in heating the sheet using infrared lamps and the second step consists in forming the sheet into a mold. The contributions of this work are as follows: development of numerical modelling of the thermoforming process for non-isothermal viscoelastic sheet under large strains. Simulation of the heating step with taken into account the heterogeneous radiative heat transfer due to the shape of the tools. Finally, a set of simulations of forming processes was realized and the results of the simulations are compared to the results of experiments.
8

Etude de la mise en oeuvre de l'acide poly (lactique) par le procédé d'extrusion film : Relation structure-procédé / Study of poly (lactic acid) casting film process : Structure-process relationship

Houichi Mani, Hikmet 25 March 2016 (has links)
Cette thèse présente une contribution originale à la compréhension et la maîtrise des mécanismes physico-chimiques qui contrôlent la mise en œuvre de l’acide poly (lactique) par le procédé d’extrusion film. Le premier chapitre de ce mémoire est consacré à une étude bibliographique sur les différents développements réalisés autour du PLA. Dans le chapitre 2, nous avons étudié le processus de cristallisation et la morphologie sphérulitique du PLA induite par le procédé d’extrusion film ainsi que l’effet de l’étirage à chaud sur les propriétés thermique du PLA. Dans le chapitre 3, le poly (éthylène glycol) a été utilisé pour améliorer la mise en oeuvre, la flexibilité et la ductilité des films de PLA. Aussi, la morphologie cristalline a été étudiée à l'aide de POM. En outre, nous avons montré que le taux de cristallisation du PLA plastifié a également contrôlé ses propriétés viscoélastiques et ses performances mécaniques finales. / This thesis presents an original contribution to the understanding of physico-chemical mechanisms that control poly (lactic acid) casting film process. Firstly, A novel way using a polarized optical microscopy and statistical image analysis techniques for direct investigation of the crystallization kinetics and spherulitic morphology of poly (lactic acid) induced by casting process has been proposed as well as the effect of drawing in thermal properties of PLA. Secondly, poly (ethylene glycol) was used to improve process ability, flexibility and ductility of PLA casting films. Overall, we found that the crystallization rate of plasticized PLA has controlled its viscoelastic properties and final mechanical performance.

Page generated in 0.1209 seconds