• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques / Contribution of in situ nanoindentation in Transmission Electron Microscopy to the study of ceramics

Calvié, Emilie 18 October 2012 (has links)
La connaissance du comportement et des propriétés des matériaux est d’une grande importance pour optimiser leur mise en forme et adapter leur utilisation. Pour étudier ces propriétés de nombreuses techniques sont couramment utilisées : les essais de traction, la microindentation, la nanoindentation instrumentée… Aujourd’hui, un intérêt particulier est porté sur les nanomatériaux et matériaux nanostructurés car ils présentent souvent des propriétés différentes et plus intéressantes. La nanoindentation instrumentée, notamment, permet de déterminer des paramètres matériaux de manière locale. Cependant, le comportement en temps réel ne peut être observé et l’échantillon ne doit pas être de dimension trop faible (typiquement, l’étude de nanoparticules n’est pas envisageable). Le principal atout de la nanoindentation in situ en Microscopie Electronique en Transmission vis-à-vis des autres techniques existantes est la possibilité d’étudier le comportement de nano-objets ou des comportements très locaux et en temps réel, tout en observant les transformations subies par le matériau. Dans cette étude, nous avons évalué les potentialités de cette nouvelle technique via l’analyse de céramiques très étudiées au laboratoire notamment en tant que biomatériaux : la zircone stabilisée et l’alumine. Dans le cas de la zircone (stabilisée à l’yttrium ou au cérium), le but était de localiser à l’échelle nanométrique les contraintes responsables ou inhérentes à la transformation de phase quadratique-monoclinique, phénomène ayant une très grande influence sur les propriétés du matériau massif. Pour ce faire, après avoir déterminé une technique de préparation adaptée, nous proposons une voie d’étude pour la localisation des contraintes liées à la transformation de phase : le CBED (Convergent Beam Electron Diffraction) couplé à la nanoindentation in situ. Dans le cas de l’alumine, l’objectif était d’étudier le matériau (commercial et non un matériau modèle) dans sa forme originelle à savoir sous forme de nanoparticules d’alumine de transition. L’idée était d’étudier le comportement de ces nanoparticules sous compression. Nous avons notamment constaté que ces particules pouvaient subir une grande déformation plastique à température ambiante. Nous avons pu également, sur quelques particules, obtenir une série d’images en cours de compression ainsi que la courbe de charge-déplacement correspondante. Ces résultats ont ensuite été soumis à une analyse des images couplée à une simulation de type Eléments Finis (réalisées par le LAMCOS). / Knowledge of the behavior and properties of materials is of great importance to optimize their processing and adapt their use. To study these properties, many techniques are commonly used: tensile tests, microindentation, instrumented nanoindentation ... Today, particular interest is focused on nanomaterials and nanostructured materials because they often have different and more interesting properties. Instrumented nanoindentation allow to determine material parameters. However, the real-time behavior can not be observed and the study of nano-objects is difficult (nanoparticles for example). The main advantage of in situ TEM (Transmission Electron Microscopy) nanoindentation is the ability to study the behavior of nano-objects in real time. In this study, we evaluated the potential of this new technique by analyzing ceramics extensively studied in the laboratory such as biomaterials: stabilized zirconia and alumina. In the case of zirconia (stabilized with yttrium or cerium), the goal was to locate at the nanoscale, the constraints responsible for the tetragonal to monoclinic phase transformation. This phenomenon having a great influence on the bulk material properties. To do this, after having determined a suitable preparation method, we suggest a way to study the localization of constraints: the CBED (Convergent Beam Electron Diffraction) coupled with in situ TEM nanoindentation. In the case of alumina, the goal was to study the material in its original form (nano powder of transition alumina). The idea was to study the behavior of these nanoparticles under compression. We particularly observed that these particles could undergo large plastic deformation at room temperature. We have also obtained during compression on few particles, series of images and the corresponding load-displacement curve. These results were then analyzed by image analysis coupled with Finite Element simulations (performed in LAMCOS lab).
2

Recrystallization of L-605 cobalt superalloy during hot-working process

Favre, Julien 25 September 2012 (has links) (PDF)
Co-20Cr-15W-10Ni alloy (L-605) is a cobalt-based superalloy combining high strength with keeping high ductility, biocompatible and corrosion resistant. It has been used successfully for heart valves for its chemical inertia, and this alloy is a good candidate for stent elaboration. Control of grain size distribution can lead to significant improvement of mechanical properties: in one hand grain refinement enhance the material strength, and on the other hand large grains provide the ductility necessary to avoid the rupture in use. Therefore, tailoring the grain size distribution is a promising way to adapt the mechanical properties to the targeted applications. The grain size can be properly controlled by dynamic recrystallization during the forging process. Therefore, the comprehension of the recrystallization mechanism and its dependence on forging parameters is a key point of microstructure design approach. The optimal conditions for the occurrence of dynamic recrystallization are determined, and correlation between microstructure evolution and mechanical behavior is investigated. Compression tests are carried out at high-temperature on Thermec-master Z and Gleeble forging devices, followed by gas or water quench. Mechanical behavior of the material at high temperature is analyzed in detail, and innovative methods are proposed to determine the metallurgical mechanisms at stake during the deformation process. Mechanical properties of the material after hot-working and annealing treatments are investigated. The grain growth kinetics of L-605 alloy is determined, and experimental results are compared with the static recrystallization process. Microstructures after hot deformation are evaluated using SEM-EBSD and TEM. Significant grain refinement occurs by dynamic recrystallization for high temperature and low strain rate (T≥1100 ◦ C, strain rate < 0.1s−1), and at high strain rate (strain rate > 10s−1). Dynamic recrystallization is discontinuous and takes place from the grain boundaries, leading to a necklace structure. The nucleation mechanism is most likely to be bulging from grain boundaries and twin boundaries. A new insight of the modeling of dynamic recrystallization taking as a starting point the experimental data is proposed. By combining the results from the mechanical behavior study and microstructure observation, the recrystallization at steady-state is thoroughly analyzed and provides the mobility of grain boundaries. The nucleation criterion for the bulging from grain boundaries is reformulated to a more general expression suitable for any initial grain size. Nucleation frequency can be deduced from experimental data at steady-state through modeling, and is extrapolated to any deformation condition. From this point, a complete analytical model of the dynamic recrystallization is established, and provides a fair prediction on the mechanical behavior and the microstructure evolution during the hot-working process.
3

In situ TEM nanocompression and mechanical analysis of ceramic nanoparticles / Nanocompression TEM in situ et analyse mécanique de nanoparticules de céramique

Issa, Inas 19 January 2016 (has links)
Dans cette étude, nous proposons d’utiliser la compression in situ dans le MET afin de caractériser les propriétés mécaniques de nanoparticules céramiques dont la taille caractéristique est de l’ordre de quelques dizaines de nanomètres. Nous appliquerons cette méthode à des nanocubes monocristallins de MgO, une céramique modèle dont la plasticité est bien connue dans le matériau massif. Les essais de nanocompression montrent que les nanocubes de MgO se déforment de façon homogène jusqu’à de grandes déformations (>50%) sans fissure apparente. L’analyse des résultats est assistée par des méthodes de corrélation d’images numériques et simulations de type dynamique moléculaire. Le mécanisme de déformation et l'effet de taille sur la limite élastique sont identifiés. Dans une deuxième partie de la thèse, nous présentons une étude sur des nanoparticules d’alumine de transition compactée en CED (Cellule à Enclumes en Diamant) à température ambiante, sous plusieurs pressions (5 GPa, 15 GPa et 20 GPa). Des lames minces préparées par FIB ont été étudiées en MET. Des images HRTEM montrent une texture cristallographique qui devient plus importante à des pressions plus élevées. Une orientation cristallographique préférentielle est observée, avec les plans {220} de la phase gamma de l’alumine la plupart du temps parallèles à la surface de contact avec une particule voisine. Ce comportement mécanique est cohérent avec un système de glissement, connu pour les structures spinelles. Une corrélation de ce comportement avec les tests in situ MET réalisés sur des nanoparticules similaires, par Emilie Calvié lors de sa thèse, est présentée. Enfin, des clichés de diffraction de type Debye Scherrer sont réalisés sur ces lames minces de nanoparticules d’alumine de transition compactées en CED à différentes pressions. L’analyse quantitative de ces clichés montre une transformation de phase de ces nanoparticules d’alumine de phase gamma en phase delta, de manière croissante avec la pression. / In this study, we propose an innovative mechanical observation protocol of ceramics nanoparticles in the 100nm size range. This Protocol consists of in situ TEM nanocompression tests of isolated nanoparticles. Load–real displacements curves, obtained by Digital Image Correlation, are analyzed and these analyses are correlated with Molecular Dynamics simulations. By this protocol a constitutive law with its mechanical parameters (Young modulus, Yield stress...) of the studied material at the nano-scale can be obtained. In situ TEM nano-compression tests on magnesium oxide nanocubes are performed. Magnesium oxide is a model material and its plasticity is very well known at bulk. The MgO nanocubes show large plastic deformation, more than 50% of plastic strain without any fracture. The TEM results are correlated to MD simulations and the deformation mechanism can be identified.The size effect and the electron beam effect on the yield strength are investigated. In a second part of the dissertation, we present a study on transition alumina nanoparticles compacted in a Diamond Anvil Cell at different uniaxial pressures. Thin Foils of these compacted nanoparticles are prepared by FIB for HRTEM Observations. Their analysis reveals the plastic deformation of the nanoparticles. The crystallographic texture observed inthese compacted nanoparticles in DAC shows a preferred orientation of the {110} lattice planes, orientated perpendicular to the compression direction. This is compatible with the slip system. This argument was reinforced with a preferred orientation of slip bands observed during in situ TEM nano-compression tests. Moreover, electron diffraction patterns (Debye Scherrer) analysis on these compacted transition alumina nanoparticles reveals the decrease of the presence of gamma-alumina and the increase of delta-alumina with increasing pressure. This reveals the phase transformation with increasing pressure from gamma to delta* alumina.
4

Recrystallization of L-605 cobalt superalloy during hot-working process / Recristallisation du superalliage base cobalt L-605 pendant la déformation à chaud

Favre, Julien 25 September 2012 (has links)
L’alliage L-605 est un superalliage base cobalt combinant une haute résistance et une bonne ductilité, de plus il est biocompatible et présente une bonne résistance a la corrosion. Dû a son inertie chimique dans le corps humain, ce matériau a été utilise avec succès pour fabriquer des valves cardiaques et des stents. Le contrôle de la microstructure peut influencer grandement les propriétés mécaniques : notamment un raffinement des grains est susceptible d’augmenter d’avantage la résistance et serait intéressant pour permettre de fabriquer des stents selon une architecture plus fine. L’ajustement de la distribution de taille de grains à travers le phénomène de recristallisation lors de la déformation à chaud apparait comme une solution pratique pour ajuster les propriétés mécaniques du matériau. Pour contrôler la microstructure et choisir les conditions de procédé optimales, les mécanismes mis en jeu lors de la recristallisation dynamique et l’effet des conditions de déformation sur la taille de grain doivent être compris et prévisibles par des outils théorique. Les propriétés mécaniques du matériau à haute température sont déterminées par des essais de compression à chaud. L’évolution microstructurale du matériau lors de la compression est analysée par microscopie optique et électronique (EBSD, TEM). Le phénomène de recristallisation dynamique continue est mis en évidence, et procède par nucléation de nouveaux grains aux joints de grain. La corrélation entre le comportement mécanique à chaud et l’évolution microstructurale est déterminée expérimentalement. Les conditions optimales de déformation impliquant la recristallisation dynamique sont déterminées, et la microstructure résultante est étudiée en détail. De nouveaux outils théoriques permettant de prévoir les conditions de recristallisation et d’extraire les paramètres physiques du matériau a partir des données expérimentales sont proposés. Enfin, la recristallisation dynamique est modélisée analytiquement, et permet de prédire le comportement mécanique et l’évolution de la taille de grain lors de la déformation. / Co-20Cr-15W-10Ni alloy (L-605) is a cobalt-based superalloy combining high strength with keeping high ductility, biocompatible and corrosion resistant. It has been used successfully for heart valves for its chemical inertia, and this alloy is a good candidate for stent elaboration. Control of grain size distribution can lead to significant improvement of mechanical properties: in one hand grain refinement enhance the material strength, and on the other hand large grains provide the ductility necessary to avoid the rupture in use. Therefore, tailoring the grain size distribution is a promising way to adapt the mechanical properties to the targeted applications. The grain size can be properly controlled by dynamic recrystallization during the forging process. Therefore, the comprehension of the recrystallization mechanism and its dependence on forging parameters is a key point of microstructure design approach. The optimal conditions for the occurrence of dynamic recrystallization are determined, and correlation between microstructure evolution and mechanical behavior is investigated. Compression tests are carried out at high-temperature on Thermec-master Z and Gleeble forging devices, followed by gas or water quench. Mechanical behavior of the material at high temperature is analyzed in detail, and innovative methods are proposed to determine the metallurgical mechanisms at stake during the deformation process. Mechanical properties of the material after hot-working and annealing treatments are investigated. The grain growth kinetics of L-605 alloy is determined, and experimental results are compared with the static recrystallization process. Microstructures after hot deformation are evaluated using SEM-EBSD and TEM. Significant grain refinement occurs by dynamic recrystallization for high temperature and low strain rate (T≥1100 ◦ C, strain rate < 0.1s−1), and at high strain rate (strain rate > 10s−1). Dynamic recrystallization is discontinuous and takes place from the grain boundaries, leading to a necklace structure. The nucleation mechanism is most likely to be bulging from grain boundaries and twin boundaries. A new insight of the modeling of dynamic recrystallization taking as a starting point the experimental data is proposed. By combining the results from the mechanical behavior study and microstructure observation, the recrystallization at steady-state is thoroughly analyzed and provides the mobility of grain boundaries. The nucleation criterion for the bulging from grain boundaries is reformulated to a more general expression suitable for any initial grain size. Nucleation frequency can be deduced from experimental data at steady-state through modeling, and is extrapolated to any deformation condition. From this point, a complete analytical model of the dynamic recrystallization is established, and provides a fair prediction on the mechanical behavior and the microstructure evolution during the hot-working process.
5

Apport de la microscopie electronique dans la compréhension des mécanismes d’interactions entre nanoparticules et cellules biologiques / Electron microscopy contribution in the comprehension of interaction mechanisms between nanoparticles and biological cells

Rima, Wael 04 December 2012 (has links)
Parmi les nanoparticules aptes à accompagner la radiothérapie en clinique, les nanoparticules à base d’oxyde de gadolinium paraissent pertinentes, de part leur multimodalité en imagerie et leur effet radiosensibilisant prouvé in vitro et in vivo. Cet effet de radiosensibilisation est exceptionnel notamment sur des cellules cancéreuses radiorésistantes de la lignée SQ20B (carcinome squameux tête et cou) et uniquement pour des doses modérées de nanoparticules (aux alentours de 0.6 mM en Gd). Les clichés de microscopie électronique ont montré que ce maximum de radiosensibilisation est dû à une internalisation maximale des particules dans le cytoplasme, notamment par macropinocytose. Ce mécanisme d’internalisation est caractérisé par la formation de vésicules de grandes tailles, ou macropinosomes. Il se produit suivant deux étapes : la formation d’agglomérats de nanoparticules à proximité de la membrane cellulaire puis la récupération de ceux-ci par les lamellipodes de la cellule. La première étape est fortement dépendante des caractéristiques physicochimiques des particules, plus particulièrement leur potentiel zêta qui détermine la taille de l’agglomérat, et de la distance les séparant de la cellule. Dans des gammes de taille et de distance à la membrane optimales aux concentrations modérées, l’agglomérat peut être récupéré par les lamellipodes de la cellule. Il s’en suit une protubérance sur la membrane plasmique formant un macropinosome contenant les agglomérats de nanoparticules. Cet endosome précoce suivra ensuite le schéma d’endocytose classique dans le cytoplasme en fusionnant avec des corps multivésiculaires, uniquement visible en microscopie électronique à transmission, pouvant contenir des enzymes de dégradation détruisant leur contenu. Ces enzymes rendent le pH acide à l’intérieur de la vésicule. Plus les nanoparticules sont proches du noyau cellulaire plus leur effet radiosensibilisant sera efficace. Les espèces oxygénées réactives (ROS) et les électrons Auger et secondaires peuvent atteindre l’ADN du noyau plus facilement. A faibles doses (<0.4 mM) très peu de nanoparticules sont internalisées et un effet linéaire de la radiosensibilisation est observé jusqu'à 0.6 mM. A fortes doses (> 0.7 mM) les nanoparticules forment une couronne autour de la membrane cellulaire agissant comme écran, empêchant ainsi les ROS et les électrons générés de pouvoir atteindre l’ADN et induire des cassures, le noyau étant situé à quelques micromètres de la membrane cellulaire. Les résultats obtenus ouvrent la voie sur la nécessité de contrôler l'internalisation cellulaire des nanoparticules en contrôlant leur chimie, laissant envisager ainsi des opportunités prometteuses dans le domaine de la radiothérapie assistée par nanoparticules délivrant de faibles doses de radiation aux patients. / Over the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macro- pinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to induce in vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the “arms”) of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses.
6

‘Tri-3D’ electron microscopy tomography by FIB, SEM and TEM : Application to polymer nanocomposites / Tomographie électronique ‘Tri-3D’ en FIB, SEM et TEM : Application aux nanocomposites polymère

Liu, Yang 25 July 2013 (has links)
Ce travail a porté sur la caractérisation et la quantification en 3D de la répartition de charges de différents types (nanoparticules, nanotubes, etc.) dans des matrices polymères. Nous nous focalisons sur les techniques de tomographie en microscopie électronique. Une approche multiple en tomographie électronique a été réalisée : la tomographie en FIB/MEB (faisceau d’ions focalisé/microscope électronique à balayage), la tomographie en MEB et la tomographie en MET (microscope électronique en transmission). Les nanocomposites polymère sont généralement élaborés aux fins d’améliorer les propriétés physiques (mécanique, électrique, etc.) du matériau polymère constituant la matrice, grâce à une addition contrôlée de charges nanométriques. La caractérisation de tels matériaux, et l’établissement de corrélations précises entre la microstructure et les propriétés d’usage, requièrent une approche tri-dimensionnelle. En raison de la taille nanométrique des charges, la microscopie électronique est incontournable. Deux systèmes de nanocomposite polymère ont été étudiés par une approche multiple de tomographie électronique : P(BuA-stat-S)/MWNTs (copolymère statistique poly (styrène-co-acrylate de butyl) renforcé par des nanotubes de carbone multi-parois), et P(BuA-stat-MMA)/SiO2 (copolymère statistique poly(butyl acrylate-co-methyl methacrylate) renforcé par des nanoparticules de silice). Par combinaison de divers techniques, la caractérisation et la quantification des nanocharges ont été possibles. En particulier, la taille, la fraction volumique et la distribution des charges ont été mesurées. Cette étude a ainsi fourni des informations en 3D qui contribuent à mieux comprendre les propriétés des nanocomposites. Une attention particulière a été portée aux artefacts et causes d’erreur possibles durant l’étape de traitement 3D. Nous avons également essayé de comparer les différentes techniques utilisées du point de vue de leurs avantages et inconvénients respectifs, en dégageant des possibilités d’amélioration future. / This work is focused on the characterization and quantification of the 3D distribution of different types of fillers (nanoparticles, nanotubes, etc.) in polymer matrices. We have essentially used tomography techniques in electron microscopy. Multiple approaches to electron tomography were performed: FIB-SEM (focused ion beam/scanning electron microscope) tomography, SEM tomography and TEM (transmission electron microscope) tomography. Polymer nanocomposites are basically synthesized in order to improve the physical properties (mechanical, electric, etc.) of the pure polymer constituting the matrix, by a controlled addition of fillers at the nanoscale. The characterization of such materials and the establishment of accurate correlations between the microstructure and the modified properties require a three-dimensional approach. According to the nanometric size of the fillers, electron microscopy techniques are needed. Two systems of polymer nanocomposites have been studied by multiple electron tomography approaches: P(BuA-stat-S)/MWNTs (statistical copolymer poly(styrene-co-butyl acrylate) reinforced by multi-walled carbon nanotubes) and P(BuA-stat-MMA)/SiO2 (statistical copolymer poly(butyl acrylate-co-methyl methacrylate) reinforced by silica nanoparticles). By combining various techniques, the characterization and the quantification of nanofillers were possible. In particular, statistics about size, distribution and volume fraction of the fillers were measured. This study has then provided 3D information, which contributes to a better understanding of properties of the nanocomposites. Attention has been paid to analyze carefully original data, and artifacts and causes of errors or inaccuracy were considered in the 3D treatments. We also attempted to compare benefits and drawbacks of all techniques employed in this study, and perspectives for future improvements have been proposed.
7

Rôle de la microstructure d'un alliage à durcissement structural sur son comportement et sa tenue mécanique sous sollicitations cycliques après un transitoire thermique / Influence of the microstructure of an age hardening alloy on its cyclic mechanical behaviour after transient heat treatments

Bardel, Didier 28 May 2014 (has links)
Pour fabriquer le caisson-coeur du futur réacteur expérimental Jules Horowitz (RJH), un assemblage de viroles est effectué à l'aide d'un procédé haute énergie : le soudage par faisceau d'électrons (FE). L'aluminium 6061-T6 qui a été choisi pour la fabrication de ces viroles est un alliage à durcissement structural, ce qui signifie que ses propriétés mécaniques sont très fortement dépendantes de son état de précipitation. Lors du soudage des viroles, l'état microstructural du matériau est affecté : on assiste notamment à une dégradation de l'état fin de précipitation (T6). Les conséquences de cette dégradation microstructurale sont diverses. Notamment, l'évolution de l'état de précipitation au cours du soudage engendre une variation du comportement mécanique et impactera donc la distribution des contraintes résiduelles. De plus, les propriétés mécaniques en service à proximité du joint soudé seront grandement modifiées, on assiste par exemple à une chute de la limite d'élasticité. Dans ce travail, des essais cycliques ont été effectués après des chargements thermiques représentatifs d'une opération de soudage mais aussi pendant des essais isothermes. L'analyse de ces résultats et la confrontation à des mesures de Diffusion de Neutrons aux Petits Angles (DNPA) et de Microscopie Electronique en Transmission (MET) permettent de comprendre les effets de la précipitation sur la loi de comportement de l'alliage. Afin de prédire les évolutions microstructurales et mécaniques dans l'alliage 6061, un logiciel de précipitation a été implémenté et couplé à un modèle élastoplastique à base physique. Les résultats obtenus permettent de représenter la grande variété de comportement observé lors de la campagne expérimentale. Un couplage entre simulation éléments finis thermique et précipitation a été effectué et permet d'ouvrir des perspectives de simulations plus physiques pour ce type d'alliage. / In order to assemble the pressure vessel of experimental Reactor Jules Horowitz (RJH) of France in the future, the electron beam welding process will be used. Several ferrules in a 6061-T6 age hardening aluminum alloy are used for manufacturing this vessel. The fine precipitation state (T6) is affected significantly by the electron beam welding process. Consequently, this microstructural degradation leads to an evolution of the mechanical behaviour and thus will affect the distribution of residual stresses. Moreover, the mechanical properties of the weld joint at ambiant temperature can be modified, such as the yield stress that may drop from 280 MPa to 55 MPa. In this work, cyclic tensile tests have been performed after anisothermal histories representative of welding and during isothermal treatments. The analysis of these results is compared with Small Angles Neutrons Scattering (SANS) and Transmission Electron Microscopy (TEM) characterizations that allow to understand the effect of the precipitation on the material behaviour. To predict the microstructural evolutions in the 6061 structure, a precipitation model has been developped. The precipitation software "PreciSo" coupled with a Finite Element thermal simulations and elastoplastic models allows to open new prospectives in the physical-based simulations domain.

Page generated in 0.5151 seconds