• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanismes et tenue mécanique long-terme de mousses polyuréthanes pures et renforcées aux températures cryogéniques

Denay, Anne-Gaëlle 14 March 2012 (has links) (PDF)
Le cadre général de l'étude concerne la tenue en fluage long-terme de mousses polyuréthane utilisées dans la paroi de cuves de méthaniers. Le comportement mécanique en compression monotone, fluage sous faible contrainte et analyse mécanique dynamique (DMA), a donc été caractérisé jusqu'aux températures cryogéniques (-170°C) sur mousses polyuréthanes renforcées ou non par du mat de fibres de verre. Le premier objectif était de caractériser la réponse et les mécanismes activés à basse température. L'endommagement induit par le fort refroidissement des échantillons affecte les tout premiers stades de déformation en compression, variablement selon la taille d'échantillon. Les micrographies et observation tomographiques post-mortem ne mettent pas en évidence d'endommagement flagrant. Une déformation de fluage en partie recouvrable est également observée. Le second objectif était de réfléchir à une méthode de prédiction de la tenue long terme en fluage par équivalence temps-température en DMA. Les différentes transitions rencontrées entre -170°c et la transition vitreuse ont donc été analysées, de même que la représentativité des petits échantillons utilisés dans ce dispositif. L'effet de taille n'as pas d'effet sur la cinétique de fluage, qui peut donc être obtenue dans le dispositif de DMA. Les résultats obtenus en DMA multifréquence n'ont cependant pas permis de construire de courbe maîtresse. Cette approche n'apparaît pas la plus convaincante pour prédire le comportement en fluage sous faible contrainte et à long terme de ces mousses.
2

Etude de l'initiation de la plasticité et de l'endommagement de polymères semi-cristallins par des méthodes d’évaluation non-destructives ultrasonores / Study of the initiation of plasticity and damage of semi-crystalline polymers by ultrasonic non-destructive evaluation methods

Casiez, Nicolas 14 April 2015 (has links)
Les polymères semi-cristallins sont des matériaux très répandus dans notre vie quotidienne et sont utilisés dans une large gamme d'applications, généralement sous des sollicitations viscoélastiques. Par conséquent, nombreux sont les travaux de recherche qui ont été menés ces dernières années afin d’étudier leurs propriétés élastiques et leurs micro-mécanismes de plasticité ou d'endommagement apparaissant en leur sein à l'échelle locale . Cependant, l'observation in situ de l'amorçage de ces mécanismes demeure problématique et requiert l’emploi d’équipements complexes. Dès lors, nous proposons d’utiliser des techniques d'analyse non destructives fondées sur la détection et la propagation d'ondes ultrasonores (US) afin d’obtenir de nouvelles informations sur l'initiation de la plasticité et de l'endommagement de polymères semi-cristallins. Plus précisément, nous avons utilisé les techniques de contrôle par ondes US et émission acoustique (EA) afin de caractériser la plasticité et l'endommagement de plusieurs PE , d’un PP et d’un PVDF lors d'essais de traction uniaxiale. La technique de contrôle US a permis de montrer que l'atténuation US de différents types d'ondes est élevée et augmente lorsque le taux de cristallinité du matériau diminue. Pour les ondes guidées, nous avons montré l'influence de la géométrie des éprouvettes ainsi que celle de la fréquence des ondes sur l'atténuation. Lors d’un essai de traction, une importante modification des paramètres US est observée lors du passage dans le domaine plastique, traduisant l'évolution de l'état de la microstructure, en particulier celui du réseau cristallin. La formation de micro-cavités a un impact significatif sur l'atténuation des ondes. L'effet de l'orientation des chaînes macromoléculaires a également été mis en évidence. L'activité acoustique des matériaux étudiés est faible mais il a été possible de vérifier que la majorité des signaux d'EA détectés proviennent bien des micro-mécanismes de plasticité et d'endommagement. L'effet de la vitesse de déformation est significatif et nous avons montré que la localisation de certains signaux est possible lorsque cette vitesse de déformation est élevée. L'activité acoustique présente trois phases au cours des essais de traction, ce qui nous a permis de proposer en conséquence un modèle de répartition des sources d'EA sur les éprouvettes. L'activité acoustique démarre toujours avant le seuil de plasticité montrant ainsi que des micro-mécanismes de plasticité et d'endommagement s'initient aux faibles déformations. La détection de signaux d'EA avant le seuil de plasticité dépend aussi du taux de cristallinité. Le nombre de signaux d'EA détectés ainsi que leur énergie augmentent avec le taux de cristallinité du matériau. Un critère de plasticité a donc été proposé. / Semi-crystalline polymers are widely used materials in our everyday life and in a large range of applications, generally under visco-elastic solicitations. Consequently, many of the recent years researches study their elastic properties and their plasticity or damage micro-mechanisms occurring at a local scale (nano and micrometer). However, in situ observations of the initiation of these mechanisms (e.g. shear crystallites, cavitation or martensitic transformation) remain problematic and require the use of complex devices. Therefore, we propose to use non-destructive evaluation techniques based on the detection and the propagation of ultrasonic (US) waves in order to obtain new information about the initiation of plastic deformation and damage of semi-crystalline polymers. More specifically, we have used US and acoustic emission (AE) techniques to characterize the plasticity and damage of several PE, a PP and a PVDF during tensile tests. The US monitoring technique showed that the US attenuation of several waves is high and increases when the degree of crystallinity of the material decreases. For guided waves, we showed the effect of the specimens’ geometry and the waves frequency on the US attenuation. A significant change of US parameters is observed at the elastic-plastic transition, reflecting changes in the microstructure’s state, in particular in the crystal network. The formation of micro-cavities has a significant impact on the attenuation. The effect of the orientation of macromolecular chains has also been highlighted. The acoustic activity of studied materials is weak but the majority of detected AE signals have been shown to actually originate from plasticity and damage micro-mechanisms. The effect of the strain rate is significant and we have shown that the localization of few signals is possible when the strain rate is high. The acoustic activity presents three phases during tensile tests, which allowed us to propose a model based on the distribution of AE sources on the specimens. The acoustic activity always starts before the yield point showing that plasticity and damage micro-mechanisms are initiated at small strains. The detection of AE signals before the yield point also depends on the crystallinity of the material. The number of AE signals and their energy increase with the degree of crystallinity. A plastic criterion has been proposed. The correlation between the acoustic signals and the different mechanisms is complex, however it seems that the cavitation, the breakage of crystalline lamellae and the martensitic transformation are responsible for the release of acoustic energy.
3

In situ TEM nanocompression and mechanical analysis of ceramic nanoparticles / Nanocompression TEM in situ et analyse mécanique de nanoparticules de céramique

Issa, Inas 19 January 2016 (has links)
Dans cette étude, nous proposons d’utiliser la compression in situ dans le MET afin de caractériser les propriétés mécaniques de nanoparticules céramiques dont la taille caractéristique est de l’ordre de quelques dizaines de nanomètres. Nous appliquerons cette méthode à des nanocubes monocristallins de MgO, une céramique modèle dont la plasticité est bien connue dans le matériau massif. Les essais de nanocompression montrent que les nanocubes de MgO se déforment de façon homogène jusqu’à de grandes déformations (>50%) sans fissure apparente. L’analyse des résultats est assistée par des méthodes de corrélation d’images numériques et simulations de type dynamique moléculaire. Le mécanisme de déformation et l'effet de taille sur la limite élastique sont identifiés. Dans une deuxième partie de la thèse, nous présentons une étude sur des nanoparticules d’alumine de transition compactée en CED (Cellule à Enclumes en Diamant) à température ambiante, sous plusieurs pressions (5 GPa, 15 GPa et 20 GPa). Des lames minces préparées par FIB ont été étudiées en MET. Des images HRTEM montrent une texture cristallographique qui devient plus importante à des pressions plus élevées. Une orientation cristallographique préférentielle est observée, avec les plans {220} de la phase gamma de l’alumine la plupart du temps parallèles à la surface de contact avec une particule voisine. Ce comportement mécanique est cohérent avec un système de glissement, connu pour les structures spinelles. Une corrélation de ce comportement avec les tests in situ MET réalisés sur des nanoparticules similaires, par Emilie Calvié lors de sa thèse, est présentée. Enfin, des clichés de diffraction de type Debye Scherrer sont réalisés sur ces lames minces de nanoparticules d’alumine de transition compactées en CED à différentes pressions. L’analyse quantitative de ces clichés montre une transformation de phase de ces nanoparticules d’alumine de phase gamma en phase delta, de manière croissante avec la pression. / In this study, we propose an innovative mechanical observation protocol of ceramics nanoparticles in the 100nm size range. This Protocol consists of in situ TEM nanocompression tests of isolated nanoparticles. Load–real displacements curves, obtained by Digital Image Correlation, are analyzed and these analyses are correlated with Molecular Dynamics simulations. By this protocol a constitutive law with its mechanical parameters (Young modulus, Yield stress...) of the studied material at the nano-scale can be obtained. In situ TEM nano-compression tests on magnesium oxide nanocubes are performed. Magnesium oxide is a model material and its plasticity is very well known at bulk. The MgO nanocubes show large plastic deformation, more than 50% of plastic strain without any fracture. The TEM results are correlated to MD simulations and the deformation mechanism can be identified.The size effect and the electron beam effect on the yield strength are investigated. In a second part of the dissertation, we present a study on transition alumina nanoparticles compacted in a Diamond Anvil Cell at different uniaxial pressures. Thin Foils of these compacted nanoparticles are prepared by FIB for HRTEM Observations. Their analysis reveals the plastic deformation of the nanoparticles. The crystallographic texture observed inthese compacted nanoparticles in DAC shows a preferred orientation of the {110} lattice planes, orientated perpendicular to the compression direction. This is compatible with the slip system. This argument was reinforced with a preferred orientation of slip bands observed during in situ TEM nano-compression tests. Moreover, electron diffraction patterns (Debye Scherrer) analysis on these compacted transition alumina nanoparticles reveals the decrease of the presence of gamma-alumina and the increase of delta-alumina with increasing pressure. This reveals the phase transformation with increasing pressure from gamma to delta* alumina.
4

Étude et compréhension des mécanismes d'endommagement de surface de matrices de forgeage à chaud rechargées / Assessment of surface damage mechanisms of hardfaced hot forging dies

Cabrol, Elodie 11 December 2015 (has links)
Dans le domaine du forgeage à chaud de pièces aéronautiques, les matrices en acier sont couramment rechargées, sur quelques millimètres d’épaisseur, par un alliage base cobalt (Stellite 21) déposé par procédé de soudage à l’arc (MIG). Dans le cadre de ce travail de thèse, ce rechargement « classique» est comparé à des rechargements Stellite 21 et Stellite 6 déposés par deux procédés émergents dans ce domaine, le PTA et le LASER. L’objectif est d’apporter des éléments de compréhension aux mécanismes d’endommagement de surface, notamment par écoulement plastique, de ces différents rechargements afin de dégager des voies d’amélioration pour augmenter la durée de vie des matrices. Pour cela, des essais tribologiques (semi-industriels et laboratoire) ont été mis en œuvre pour créer des endommagements de surface comparables à ceux observés sur matrices industrielles. Associées à ces essais, des investigations microstructurales, structurales et mécaniques multi-échelles ont été réalisées (traction, flexion, microdureté, MO, MEB, MEB-STEM, DRX, EBSD). Selon les couples « nuance/procédé » de rechargement, des mécanismes de déformation plastique par glissement des dislocations parfaites et par transformation de phase CFC en HC ont été identifiés. L’activation de ce dernier a pu être reliée à la température de transformation allotropique CFC/HC du cobalt. Cette température dépend à la fois (i) des éléments d’addition, variant en fonction de la nuance déposée (Cr, C,...), (ii) de la dilution (variation de la teneur en Fe) liée aux paramètres de soudage et (iii) du nombre de couches déposées. De plus, une influence significative de la transformation de phase sur l’évolution du coefficient de frottement a été mise en évidence. En effet, dans le cas où la transformation de phase n’est pas observée, le coefficient de frottement est stable durant l'essai alors qu'une chute de la courbe de coefficient de frottement a été reliée avec la transformation de phase CFC en HC. Parallèlement, l'écoulement plastique des dendrites est observé en extrême surface sur quelques dizaines de micromètre d'épaisseur dans la direction de glissement. Cet écoulement est associé à une forte texturation morphologique et cristallographique de la phase identifiée (CFC ou HC), avec une orientation des plans de plus grande densité atomique parallèlement à la surface de glissement. Les résultats montrent également que sous sollicitations tribologiques, un important durcissement est observé en surface (jusqu'à 90%) et une corrélation a pu être établie entre l'augmentation de la microdureté et le taux de déformation plastique. / In the field of hot forging of aeronautical parts, the steel dies are commonly hardfaced, on few millimeters thick, by a cobalt-based alloy (Stellite 21) deposited by arc welding (MIG). As part of this thesis, this "classic" hardfacing is compared to Stellite 21 and Stellite 6 hardfacings deposited by two emerging processes in this area, the PTA and the LASER one. The objective is to assess surface damage mechanisms, especially induced by plastic strain, of these various hardfacings. Tribological tests (laboratory and semi-industrial) were used to create surface damage comparable to those observed in industrial dies. Associated with these tests, multiscale microstructural, structural and mechanical investigations have been performed (tensile, bending, microhardness, OM, SEM, STEM, XRD, EBSD). According to the « material/process » couple, plastic strain mechanisms by perfect dislocation glide and by FCC to HCP phase transformation have been identified. The activation of the latter has been connected to the temperature of the allotropic phase transformation (FCC/HCP) in cobalt. This temperature depends on (i) the alloying elements, varying according to the deposited grade (Cr, C, ...), (ii) the dilution (Fe content evolution) connected to the welding parameters and (iii) the number of deposited layer. Moreover, a significant influence of the phase transformation on the evolution of the friction coefficient has been evidenced. Indeed, if the phase transformation is not observed, the friction coefficient is stable during the test, while a drop of the friction coefficient curve is connected with the FCC to HCP phase transformation. Moreover, the plastic flow of dendrites is observed at the extreme surface, on a few tens of micrometres in thickness, in the direction of sliding. It is associated with a high morphologic and crystallographic texturing of the identified phase (FCC or HCP), with the highest atomic density planes mostly oriented parallel to the sliding surface. The results also show that, under tribological laodings, a significant hardening is observed on the surface (up to 90%) and a correlation has been established between the increase in the microhardness and the plastic deformation ratio.

Page generated in 0.1552 seconds