Spelling suggestions: "subject:"In site control""
1 |
Multi-Physics Sensing and Real-time Quality Control in Metal Additive ManufacturingWang, Rongxuan 08 June 2023 (has links)
Laser powder bed fusion is one of the most effective ways to achieve metal additive manufacturing. However, this method still suffers from deformation, delamination, dimensional error, and porosities. One of the most significant issues is poor printing accuracy, especially for small features such as turbine blade tips. The main reason for the shape inaccuracy is the heat accumulation caused by using constant laser power regardless of the shape variations.
Due to the highly complex and dynamic nature of the laser powder bed fusion, improving the printing quality is challenging. Research gaps exist from many perspectives. For example, the lack of understanding of multi-physical melt pool dynamics fundamentally impedes the research progress. The scarcity of a customizable laser powder bed platform further restricts the possibility of testing the improvement strategies. Additionally, most state-of-the-art quality inspection techniques suitable for laser powder bed fusion are costly in economic and time aspects. Lastly, the rapid and chaotic printing process is hard to monitor and control.
This dissertation proposes a complete research scheme including a fundamental physics study, process signature and quality correlation, smart additive manufacturing platform development, high-performance sensor development, and a robust real-time closed-loop control system design to address all these issues. The entire research flow of this dissertation is as follows:
1. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the melt pool dynamics, keyhole, porosity formation, vapor plume, and thermal evolution in Ti-64 and 410 stainless steel. The study discovers a strong correlation between the thermal and X-ray data, enabling the feasibility of using relatively cheap IR cameras to predict features that can only be captured using costly synchrotron X-ray imaging. Such correlation is essential for thermal-based melt pool control.
2. A highly customizable smart laser powder bed fusion platform is designed and constructed. This platform integrates numerous sensors, including but not limited to co-axial cameras, IR cameras, oxygen sensors, photodiodes, etc. The platform allows in-process parameter adjusting, which opens the boundary to test various control theories based on multi-sensing and data correlations.
3. To fulfill the quality assessment need of laser powder bed fusion, this dissertation proposes a novel structured light 3D scanner with extraordinary high spatial resolution. The spatial resolution and accuracy are improved by establishing hardware selection criteria, integrating the proper hardware, designing a scale-appropriate calibration target, and developing noise reduction procedures during calibration. Compared to the commercial scanner, the proposed scanner improves the spatial resolution from 48 µm to 5 µm and the accuracy from 108.5 µm to 0.5 µm.
4. The final goal of quality improvement is achieved through designing and implementing a real-time closed-loop system into the smart laser powder bed fusion platform. The system regulates the laser power based on the monitoring result from a novel thermal sensor. The desired printing temperature is found by correlating the laser power, the dimensional accuracy, and the thermal signatures from a set of thin-wall structure printing trails. An innovative high-speed data acquisition and communication software can operate the whole system with a graphic user interface. The result shows the laser power can be successfully controlled with 2 kHz, and a significant improvement in small feature printing accuracy has been observed. / Doctor of Philosophy / Laser powder bed fusion is one of the most effective ways to achieve metal additive manufacturing. However, this method still suffers from defects such as deformation, delamination, dimensional error, and porosities. Due to the highly complex and dynamic nature of the laser powder bed fusion, improving the printing quality is challenging. Research gaps exist from many perspectives, such as the lack of understanding of melt pool dynamics; the scarcity of a customizable laser powder bed platform; the need for suitable sensors; and the missing of a control system that can effectively regulate the rapid and chaotic printing process.
This dissertation proposes a complete research scheme to address all these issues. The fundamental study characterizes the melt pool dynamics and discovers a strong correlation between the melt pool thermal and geometrical data, enabling thermal-based melt pool control. Following that, a highly customizable smart laser powder bed fusion platform is designed and constructed. The platform allows in-process parameter changes, opening the boundary to test various control theories. A novel structured light 3D scanner with an ultra-high spatial resolution was proposed to fulfill the quality assessment need. The final goal of quality improvement is achieved through designing and implementing a real-time closed-loop system into the smart laser powder bed fusion platform. The system regulates the laser power based on real-time thermal monitoring. The result shows the laser power can be successfully controlled with 2 kHz, and a significant improvement in printing accuracy is achieved.
|
2 |
Desenvolvimento de prensa para conformação superplástica com sistema de controle in situ e tempo real de pressão e de temperatura e com módulo de monitoramento da deformação por correlação digital de imagem. / Press development for superplastic forming with in situ and real time pressure and temperature control system and module with digital image correlation for strain monitoring.Marinho, Erick Petta 14 July 2016 (has links)
Esta tese contempla o desenvolvimento de uma prensa para conformação biaxial superplástica com sistema de controle in situ e real time de pressão e de temperatura, como também um módulo de monitoramento de deformação através da técnica de correlação digital de imagem. A referida prensa é capaz de atingir durante a conformação ótimas condições superplásticas através da instrumentação e do controle dedicado dos parâmetros que caracterizam o processo de conformação fluidoestática biaxial, pressão, temperatura e taxa de deformação. São seis os principais temas abordados e desenvolvidos nessa tese: (a) técnicas, métodos e requisitos da superplasticidade da liga de titânio Ti6Al4V; (b) concepção e construção da prensa que atenda aos requisitos do projeto; (c) instrumentação do ferramental; (d) implementação do sistema de controle; (e) definição e aplicação de metodologia de ensaio superplástico para conformação fluidoestática biaxial e (f) fabricação da peça modelo. A aplicação e desenvolvimento do sistema de controle em expansão fluidoestática biaxial envolve desde a escolha das condições de conformação, determinação do ciclo de pressão, implementação de controles dedicados que atendam aos requisitos de conformação até os métodos de determinação dos coeficientes de interesse (m, n e K). Com tal instrumentação é possível determinar os coeficientes a partir de ensaios biaxiais, ao invés de simplesmente utilizar os coeficientes de ensaios de tração uniaxiais. Realizou-se um ensaio superplástico fluidoestático biaxial de chapas de liga de Ti6AL4V controlado em torno de sua condição ótima. Em suma sobre o controle, o sistema de controle térmico minimiza o intervalo de tempo de estabilização da temperatura, sem sobressinal, reduzindo o tempo de exposição do material superplástico a altas temperaturas; o sistema de controle de pressão aplica um ciclo de pressurização que é responsável por realizar a conformação de forma que resulte em uma taxa de deformação específica que represente a condição de maior índice de sensibilidade a taxa de deformação, assim se caracteriza como ponto ótimo do processo. Os principais resultados são o Ferramental instrumentado e controlado para realização de conformação superplástica em atmosfera controlada e os sistemas de controle de temperatura, pressão e deformação, validados e testados de forma integrada em ensaios de conformação superplástica / This thesis contemplates the full development of a superplastic biaxial forming Press which contains an in situ and real time pressure and temperature control systems, as well as a deformation monitoring module that applies digital image correlation technique. The Press can achieve optimum superplastic forming conditions supported by dedicated instrumentation and control of the parameters that characterize the superplastic forming process; these parameters are pressure, temperature and strain rate. Six main topics are discussed: (a) techniques, methods and Ti6Al4V alloy superplastic requirements; (b) design and construction of the press that meets the project requirements; (c) Press instrumentation; (d) control system implementation; (e) definition and implementation of a new superplastic test methodology for bulge test and (f) a part model manufacturing. The application and development of the control system in biaxial forming process involves the selection of forming conditions, pressure cycle determination, implementation of dedicated controls that meet the forming requirements, besides methods for calculating important coefficients (m, n K). With the referred instrumentation, it is possible to determine these coefficients from biaxial tests, rather than simply using the uniaxial tensile tests coefficients. A Ti6Al4V alloy fluid static superplastic biaxial test was conducted, controlled around its optimum condition. Summarizing the control system, the thermal control system minimizes the stabilization temperature time, avoiding temperature overshooting, reducing the material time exposure at superplastic temperatures. The pressure control system applies a pressurization cycle, responsible for conducting the forming process, to achieve a specific strain rate. This represents the condition of maximum strain rate sensitivity, thus characterized as optimal process point. The main results are the instrumented and controlled superplastic biaxial forming Press efficient to conduct superplastic forming in a controlled atmosphere, and temperature, pressure and deformation control systems validated and tested in an integrated Superplastic forming tests.
|
3 |
Desenvolvimento de prensa para conformação superplástica com sistema de controle in situ e tempo real de pressão e de temperatura e com módulo de monitoramento da deformação por correlação digital de imagem. / Press development for superplastic forming with in situ and real time pressure and temperature control system and module with digital image correlation for strain monitoring.Erick Petta Marinho 14 July 2016 (has links)
Esta tese contempla o desenvolvimento de uma prensa para conformação biaxial superplástica com sistema de controle in situ e real time de pressão e de temperatura, como também um módulo de monitoramento de deformação através da técnica de correlação digital de imagem. A referida prensa é capaz de atingir durante a conformação ótimas condições superplásticas através da instrumentação e do controle dedicado dos parâmetros que caracterizam o processo de conformação fluidoestática biaxial, pressão, temperatura e taxa de deformação. São seis os principais temas abordados e desenvolvidos nessa tese: (a) técnicas, métodos e requisitos da superplasticidade da liga de titânio Ti6Al4V; (b) concepção e construção da prensa que atenda aos requisitos do projeto; (c) instrumentação do ferramental; (d) implementação do sistema de controle; (e) definição e aplicação de metodologia de ensaio superplástico para conformação fluidoestática biaxial e (f) fabricação da peça modelo. A aplicação e desenvolvimento do sistema de controle em expansão fluidoestática biaxial envolve desde a escolha das condições de conformação, determinação do ciclo de pressão, implementação de controles dedicados que atendam aos requisitos de conformação até os métodos de determinação dos coeficientes de interesse (m, n e K). Com tal instrumentação é possível determinar os coeficientes a partir de ensaios biaxiais, ao invés de simplesmente utilizar os coeficientes de ensaios de tração uniaxiais. Realizou-se um ensaio superplástico fluidoestático biaxial de chapas de liga de Ti6AL4V controlado em torno de sua condição ótima. Em suma sobre o controle, o sistema de controle térmico minimiza o intervalo de tempo de estabilização da temperatura, sem sobressinal, reduzindo o tempo de exposição do material superplástico a altas temperaturas; o sistema de controle de pressão aplica um ciclo de pressurização que é responsável por realizar a conformação de forma que resulte em uma taxa de deformação específica que represente a condição de maior índice de sensibilidade a taxa de deformação, assim se caracteriza como ponto ótimo do processo. Os principais resultados são o Ferramental instrumentado e controlado para realização de conformação superplástica em atmosfera controlada e os sistemas de controle de temperatura, pressão e deformação, validados e testados de forma integrada em ensaios de conformação superplástica / This thesis contemplates the full development of a superplastic biaxial forming Press which contains an in situ and real time pressure and temperature control systems, as well as a deformation monitoring module that applies digital image correlation technique. The Press can achieve optimum superplastic forming conditions supported by dedicated instrumentation and control of the parameters that characterize the superplastic forming process; these parameters are pressure, temperature and strain rate. Six main topics are discussed: (a) techniques, methods and Ti6Al4V alloy superplastic requirements; (b) design and construction of the press that meets the project requirements; (c) Press instrumentation; (d) control system implementation; (e) definition and implementation of a new superplastic test methodology for bulge test and (f) a part model manufacturing. The application and development of the control system in biaxial forming process involves the selection of forming conditions, pressure cycle determination, implementation of dedicated controls that meet the forming requirements, besides methods for calculating important coefficients (m, n K). With the referred instrumentation, it is possible to determine these coefficients from biaxial tests, rather than simply using the uniaxial tensile tests coefficients. A Ti6Al4V alloy fluid static superplastic biaxial test was conducted, controlled around its optimum condition. Summarizing the control system, the thermal control system minimizes the stabilization temperature time, avoiding temperature overshooting, reducing the material time exposure at superplastic temperatures. The pressure control system applies a pressurization cycle, responsible for conducting the forming process, to achieve a specific strain rate. This represents the condition of maximum strain rate sensitivity, thus characterized as optimal process point. The main results are the instrumented and controlled superplastic biaxial forming Press efficient to conduct superplastic forming in a controlled atmosphere, and temperature, pressure and deformation control systems validated and tested in an integrated Superplastic forming tests.
|
4 |
Contribution de la nanoindentation in situ en Microscopie Electronique en Transmission à l'étude des céramiques / Contribution of in situ nanoindentation in Transmission Electron Microscopy to the study of ceramicsCalvié, Emilie 18 October 2012 (has links)
La connaissance du comportement et des propriétés des matériaux est d’une grande importance pour optimiser leur mise en forme et adapter leur utilisation. Pour étudier ces propriétés de nombreuses techniques sont couramment utilisées : les essais de traction, la microindentation, la nanoindentation instrumentée… Aujourd’hui, un intérêt particulier est porté sur les nanomatériaux et matériaux nanostructurés car ils présentent souvent des propriétés différentes et plus intéressantes. La nanoindentation instrumentée, notamment, permet de déterminer des paramètres matériaux de manière locale. Cependant, le comportement en temps réel ne peut être observé et l’échantillon ne doit pas être de dimension trop faible (typiquement, l’étude de nanoparticules n’est pas envisageable). Le principal atout de la nanoindentation in situ en Microscopie Electronique en Transmission vis-à-vis des autres techniques existantes est la possibilité d’étudier le comportement de nano-objets ou des comportements très locaux et en temps réel, tout en observant les transformations subies par le matériau. Dans cette étude, nous avons évalué les potentialités de cette nouvelle technique via l’analyse de céramiques très étudiées au laboratoire notamment en tant que biomatériaux : la zircone stabilisée et l’alumine. Dans le cas de la zircone (stabilisée à l’yttrium ou au cérium), le but était de localiser à l’échelle nanométrique les contraintes responsables ou inhérentes à la transformation de phase quadratique-monoclinique, phénomène ayant une très grande influence sur les propriétés du matériau massif. Pour ce faire, après avoir déterminé une technique de préparation adaptée, nous proposons une voie d’étude pour la localisation des contraintes liées à la transformation de phase : le CBED (Convergent Beam Electron Diffraction) couplé à la nanoindentation in situ. Dans le cas de l’alumine, l’objectif était d’étudier le matériau (commercial et non un matériau modèle) dans sa forme originelle à savoir sous forme de nanoparticules d’alumine de transition. L’idée était d’étudier le comportement de ces nanoparticules sous compression. Nous avons notamment constaté que ces particules pouvaient subir une grande déformation plastique à température ambiante. Nous avons pu également, sur quelques particules, obtenir une série d’images en cours de compression ainsi que la courbe de charge-déplacement correspondante. Ces résultats ont ensuite été soumis à une analyse des images couplée à une simulation de type Eléments Finis (réalisées par le LAMCOS). / Knowledge of the behavior and properties of materials is of great importance to optimize their processing and adapt their use. To study these properties, many techniques are commonly used: tensile tests, microindentation, instrumented nanoindentation ... Today, particular interest is focused on nanomaterials and nanostructured materials because they often have different and more interesting properties. Instrumented nanoindentation allow to determine material parameters. However, the real-time behavior can not be observed and the study of nano-objects is difficult (nanoparticles for example). The main advantage of in situ TEM (Transmission Electron Microscopy) nanoindentation is the ability to study the behavior of nano-objects in real time. In this study, we evaluated the potential of this new technique by analyzing ceramics extensively studied in the laboratory such as biomaterials: stabilized zirconia and alumina. In the case of zirconia (stabilized with yttrium or cerium), the goal was to locate at the nanoscale, the constraints responsible for the tetragonal to monoclinic phase transformation. This phenomenon having a great influence on the bulk material properties. To do this, after having determined a suitable preparation method, we suggest a way to study the localization of constraints: the CBED (Convergent Beam Electron Diffraction) coupled with in situ TEM nanoindentation. In the case of alumina, the goal was to study the material in its original form (nano powder of transition alumina). The idea was to study the behavior of these nanoparticles under compression. We particularly observed that these particles could undergo large plastic deformation at room temperature. We have also obtained during compression on few particles, series of images and the corresponding load-displacement curve. These results were then analyzed by image analysis coupled with Finite Element simulations (performed in LAMCOS lab).
|
Page generated in 0.078 seconds