• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding the effects of temperature on the behaviour of clay

Kurz, David 22 April 2014 (has links)
There is a growing need to better understand the relationship between time, strain rate, and temperature on the load-deformation behaviour of clay soils in engineering applications. These applications may include: infrastructure constructed in northern regions where climate change is a growing concern; disposal of nuclear waste; and, industrial structures, such as furnaces, foundries, and refrigeration plants. Temperature variations may induce changes in internal pressure in the soil, swelling and shrinkage, and affect the mechanical properties of the soil. This thesis presents thermal numerical modeling for two instrumented field sites in northern Manitoba. Thermal conductivity testing on samples from these sites and field data are used to calibrate these thermal numerical models. Various boundary conditions are examined. The capabilities of the models are evaluated to determine if the models adequately simulate and predict changes in temperature in geotechnical structures. A discussion is presented on the strengths and weaknesses in the models and the predictive capabilities of the models. The thesis then shifts into understanding the concepts of thermoplasticity and viscoplasticity and the mathematics relating these concepts. Mathematical models that describe these concepts are examined and compared with traditional soil mechanics approaches. The concepts of thermoplasticity and viscoplasticity are combined in an encompassing elastic thermo-viscoplastic (ETVP) model using a semi-empirical framework. A sensitivity analysis is used to evaluate quantitatively the response of the model. The model is then validated qualitatively against published laboratory data. Applications of the ETVP model are discussed.
2

Computational Code for Optimization of Thermal Treatment of Fine Grained Soils as a Method of Expediting their Load Induced Consolidation

Abeysiridara Samarakoon, Radhavi 29 June 2016 (has links)
Construction in soft soils has been a challenging task for engineers due to the excessive time taken for dissipation of construction induced pore water pressure and the ensuing postconstruction settlement. Use of vertical drains has proven to be an effective and economical method for soft ground improvement and hence extensive research has been carried out to further improve its efficiency. Effect of temperature on radial consolidation is one aspect of such research among many others that have been pursued. Elevated temperature certainly has a pronounced effect on the hydraulic conductivity due to the reduction it causes in the viscosity of water. Furthermore, temperature also generates excess pore water pressure due to the tendency for differential volumetric expansion between the soil grains and pore water. Thermally induced volumetric strains can have an effect on the magnitude of settlement as well. A numerical methodology based on the NavierStokes equations of flow and thermoelasto-plastic soil compressibility relationships was developed to model transient fluid flow in a clay under thermal treatment. Experimentally verified soil compressibility relationships coupling the loading and thermal effects obtained from literature were employed in this model. The transient temperature distribution within the consolidation soil was modeled using the Fourier’s equation of heat transfer. The effect of temperature on consolidation of clay was investigated by a parametric study involving different maximum temperatures, surcharge loads and initial porosities of clay. It was concluded that the improvement in the magnitude and rate of settlement at elevated temperature is more significant at relatively smaller surcharges and low initial porosities. Since there is a possibility for thermally induced volumetric expansion even in normally consolidated clays, an optimum combination of surcharge and thermal treatment should be employed for given initial conditions of the soil, in order to achieve the maximum improvement in settlement. The developed numerical model will provide the framework to carry out further investigations and determine the viability of the practical implementation of coupled thermomechanical consolidation using prefabricated vertical drains.
3

Development of depolymerization methods of carbonaceous resources utilizing reduction reactions by formic acid / ギ酸による穏和な還元反応を利用した炭素資源の低分子化法の開発

Ren, Jie 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24643号 / 工博第5149号 / 新制||工||1983(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 河瀬 元明, 教授 大嶋 正裕, 教授 佐野 紀彰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.066 seconds