• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thin bedded reservoirs in the Plio-Pleistocene of the Columbus Basin, offshore Trinidad : challenges of reservoir architecture, quantification and characteristics

Ramnath, Maria Melissa January 2015 (has links)
The Columbus Basin, offshore Trinidad, is a mature gas producing basin with a number of major fields now in decline. Focus for infield exploration and production is shifting, with thin bedded sandstones as a secondary pay target. This basin is exceptional as age equivalent analogues to the subsurface reservoirs are exposed along the south east coast of Trinidad at Mayaro Bay (16 – 25 m sections). This research utilizes these outcrops and integrates findings with subsurface core data to present an improved understanding of thin bedded sandstones in three significant areas: 1) depositional setting on a wave dominated delta through description and interpretation of their large scale architecture and facies associations, 2) reservoir quality and connectivity of the facies and microfacies that comprise these heterolithic units through petrography and pore system characterization and 3) pore scale reservoir quality and connectivity through micro CT imaging and 3D modelling of their pore system morphology. Detailed sedimentological analysis has revealed that thin beds are highly interbedded units with thicknesses of 0.1 – 10 cm and have a lenticular geometry. Their lateral extent, controlled by their exposure, varies from 3 to 10s m in some areas. Field sampling and microfacies analysis, revealed five distinct lithofacies types and five microfacies types that make up two principal facies associations (FA): (FA1) axial distal delta front facies and (FA2) lateral distal delta front facies. The reservoir quality poroperm data achieved for the thin sandstones of these two facies associations are consistent with routine core analysis data from basin core and industry assigned values for conventional thicker bedded sandstones, inferring their secondary reservoir potential. Utilizing new techniques such as X-Ray tomography, a high resolution 3D model of the thin sandstone pore systems has been created for qualitative and quantitative reservoir characterization, especially vertical and lateral connectivity within the thin bedded units. This detailed dataset of 3D pore dimensions that can be used as conditioning data for other reservoir models. The observations and conclusions of this research give an insight into the depositional architecture and thin bedded sandstones on a distal delta front and their associated reservoir properties and connectivity mechanisms that facilitate an effective reservoir. These findings may inform and guide future exploration and appraisal, development and production and well completion and configuration programmes for thin bedded reservoirs as explained by the implications and recommendations at the end of this thesis.
2

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field

Aniekwena, Anthony Udegbunam 15 November 2004 (has links)
The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has provided useful information about the behavior and characteristics of a typical unconsolidated, overpressured, fine-grained, turbidite reservoir, which constitutes the majority of the reservoirs present in the Outer Continental Shelf of the Gulf of Mexico. Reservoirs in the Green Canyon 18 (GC 18) field constitute part of a turbidite package with reservoir quality typically increasing with depth. Characterization of the relatively shallow 8 reservoir had hitherto been hindered by the difficulty in resolving its complex architecture and stratigraphy. Furthermore, the combination of its unconsolidated rock matrix and abnormal pore pressure has resulted in severe production-induced compaction. The reservoir's complex geology had previously obfuscated the delineation of its hydrocarbon accumulation and determination of its different resource volumes. Geological and architectural alterations caused by post-accumulation salt tectonic activities had previously undermined the determination of the reservoir's active drive mechanisms and their chronology. Seismic interpretation has provided the reservoir geometry and topography. The reservoir stratigraphy has been defined using log, core and seismic data. With well data as pilot points, the spatial distribution of the reservoir properties has been defined using geostatistics. The resulting geological model was used to construct a dynamic flow model that matched historical production and pressure data.. The reservoir's pressure and production behavior indicates a dominant compaction drive mechanism. The results of this work show that the reservoir performance is influenced not only by the available drive energy, but also by the spatial distribution of the different facies relative to well locations. The study has delineated the hydrocarbon bearing reservoir, quantified the different resource categories as STOIIP/GIIP = 19.8/26.2 mmstb/Bscf, ultimate recovery = 9.92/16.01 mmstb/Bscf, and reserves (as of 9/2001) = 1.74/5.99 mmstb/Bscf of oil and gas, respectively. There does not appear to be significant benefit to infill drilling or enhanced recovery operations.

Page generated in 0.0416 seconds