• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Chemistry of Ynamide and its Application in Organic Synthesis

Siyu, Y., Wu, Na (Anna) 30 March 2021 (has links)
Yes / Ynamide, is an understudied but attractive class of alkynes, activated by the donating ability of the nitrogen adjacent to alkynes. With the nucleophilicity on β-carbon and the electrophilicity on α-carbon of ynamides, this review summarizes the syntheses of ynamides and miscellaneous reactions - oxidation, rearrangement, cyclization, and cycloaddition to construct complicated heterocyclic rings. The synthetic methodologies were further applied into natural products synthesis, e.g. marinoquinolines A and C, aplidiopsamine A, rigidin A, and 7-azaserotonin derivative. / We thank National Science Foundation of China (NSFC) (21462004), State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2014-A04), 2015 GXNSFBA (139032), GXNU, and Newton International Fellowship granted by Royal Society.
2

Celogentin C and Thioviridamide: Synthetic and Structural Studies

Litvinov, Dmitry Nikolayevich 07 June 2010 (has links) (PDF)
Project I Celogentin C, isolated by Kobayashi from the seeds of Celosia argentea in 2001 exhibits strong inhibitory behavior towards polymerization of tubulin – globular protein, which plays crucial role during the cell division cycle. We have attempted synthesis of the left-hand ring of celogentin C via the intramolecular alkylation and the Knoevenagel condensation strategies. Utilizing synthetic methodologies in the field of nitroacetyl chemistry, developed by Kornblum and Rajappa we have successfully prepared the intermolecular Knoevenagel condensation product – the late-stage precursor to the left-hand ring of celogentin C. Synthesis of this key intermediate subsequently led to the preparation of the left-hand ring and the total synthesis of celogentin C by other members of Castle's group. Project II Thioviridamide is the potent apoptosis inducer isolated by Hayakawa from the bacterial broth of Streptomyces olivoviridis. Unusual structural features of the thioviridamide macrocycle contain two novel amino acids, never before encountered in a natural product - S-(2-aminovinyl)cysteine (avCys) and β-hydroxy-N1,N3-dimethylhistidinium (hdmHis). No stereochemical information except for the Z-configuration of the β-thioenamide linkage was reported in the literature. We have performed a computational study to predict the thioviridamide stereochemistry. Initial populations of conformers for the likely candidate structures were produced using OPLS-AA force field. Prediction of the NMR properties was accomplished at the mPW1PW91/6-311+G(2d,p) level of theory with the polarizable continuum model of salvation. Utilizing Boltzmann averaging and statistical analysis we have determined that the only possible cases of stereochemical inversion occur at the sites of the two novel amino acids. Project III Model studies towards the synthesis of the β-thioenamide subunit of thioviridamide were performed. The radical addition reaction of thiyl radicals to ynamides produces Z- (kinetic products) or E- β-thioenamides (thermodynamic products) depending on the reaction conditions. Two distinct sets of reaction conditions allowing kinetic or thermodynamic control of β-thioenamide formation were developed. Synthesis of the model β-thioenamide subunit of thioviridamide was attempted.

Page generated in 0.052 seconds