Spelling suggestions: "subject:"ullmann coupling"" "subject:"ellmann coupling""
1 |
The Chemistry of Ynamide and its Application in Organic SynthesisSiyu, Y., Wu, Na 30 March 2021 (has links)
Yes / Ynamide, is an understudied but attractive class of alkynes, activated by the donating ability of the nitrogen adjacent to alkynes. With the nucleophilicity on β-carbon and the electrophilicity on α-carbon of ynamides, this review summarizes the syntheses of ynamides and miscellaneous reactions - oxidation, rearrangement, cyclization, and cycloaddition to construct complicated heterocyclic rings. The synthetic methodologies were further applied into natural products synthesis, e.g. marinoquinolines A and C, aplidiopsamine A, rigidin A, and 7-azaserotonin derivative. / We thank National Science Foundation of China (NSFC) (21462004), State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2014-A04), 2015 GXNSFBA (139032), GXNU, and Newton International Fellowship granted by Royal Society.
|
2 |
Synthèse et caractérisation d'assemblages multi-porphyriniques à espaceurs NHC / Synthesis and characterization of multi-porphyrinic scaffolds using NHC linkersHaumesser, Julien 13 September 2013 (has links)
L'objectif de cette thèse a été de mettre au point l'introduction d'azoles en meso d'une porphyrine par couplage d'Ullmann; Divers azoles ont pu être introduit par cette méthode avec de bons rendements, par formation d'une liaison carbone-azote. il a même été possible avec certains azotes de réaliser des doubles couplages d'Ullmann, conduisant ainsi à des 5.15-diazolyle-porphyrines. De plus, ces même conditions réactionnelles ont été utilisées pour introduire un ou deux dérivés donneurs d'électrons (carbazole, phénoxazine, phénothiazine). L'introduction d'imidazole, de triazole et de benzimidazole en meso a permis, après alkylation, d'obtenir des précurseurs de carbènes N-hétérocycles (NHC). La coordination de deux équivalents de NHC sur un sel de palladium conduit à un dimère de porphyrines via coordination exocyclique. La géométrie de coordination trans-anti autour du palladium a été confirmée par l'obtention de la structure radiocristallographique de deux complexes. Les études par électrochimie de ces complexes ont révélé une communication interporphyrinique à l'état fondamental, mise en évidence par une succession de quatre vagues monoélectroniques en oxydation. / The purpose of this thesis was to functionalize the meso position of a porphyrinWith azoles using the Ullmann coupling. Various azoles were introduced with good yieldsby using this reaction, leading to the formation of a carbon-nitrogen bond. With someazoles a double Ullmann coupling was possible, resulting in the formation of 5,15-diazolyl-porphyrins. Moreover, the same conditions were used to introduce one ortwo electron-donating groups (carbazole, phenoxazine, phenothiazine). The insertionof imidazole, triazole and benzimidazole at the meso position allowed, afteralkylation, their use as N-heterocyclic carbene (NHC). Coordination of twoequivalents of NHC to a palladium salt led to a porphyrin dimer, as a bis-carbene complex. X-Ray structures revealed that the complex’s geometry was trans-anti. Electrochemistry studies of the various dimers showed interactions between the porphyrins, highlighted by four successive oxidation peaks.
|
3 |
On-surface fabrication of functional molecular nanomaterialsSkidin, Dmitry 05 December 2019 (has links)
Polyzyklische organische Moleküle und deren Derivate sind eine Klasse von Nanostrukturen, die wegen diverser möglicher Anwendungen in molekularer und organischer Elektronik viel Aufmerksamkeit in der Wissenschaft erregt haben. Um ihre einzigartigen Eigenschaften in vollem Umfang auszunutzen, muss man das Verhalten von molekularen Systemen auf der Nanoskala verstehen und eine Reihe von Herstellungsverfahren entwickeln. In dieser Arbeit werden molekulare Nanostrukturen durch den Bottom-Up-Ansatz der Oberflächensynthese erzeugt. Als Untersuchungsmethode gilt Rastertunnelmikroskopie (STM) bei tiefen Temperaturen und im Ultrahochvakuum als Werkzeug der Wahl. Drei verschiedene molekulare Systeme werden ausführlich erforscht, mit dem Ziel organische Nanostrukturen mit gewünschten Eigenschaften und atomarer Präzision zu erzeugen.
Im ersten Teil dieser Arbeit wird eine Cyclodehydrierungsreaktion erfolgreich für die Synthese von asymmetrischen Starphen verwendet. Es wird dann gezeigt, dass dieses Molekül als unimolekulares NAND-Logikgatter fungieren kann. Dabei wird die Positionierungsänderung der elektronischen Resonanz nach der Zufügung einzelner Goldatome an die Inputs des Moleküls gemessen. Eine Kombination aus atomarer und molekularer Lateralmanipulation mithilfe der Spitze des Rastertunnelmikroskops sowie Rastertunnelspektroskopie wird verwendet, um dieses Verhalten zu demonstrieren. Die steuerbare Verschiebung von molekularen Resonanzen entsteht wegen der asymmetrischen Form des Starphens und wurde theoretisch vorhergesagt.
Molekulare Drähte werden im zweiten Teil der Arbeit durch die oberflächenassistierte Ullmann-Kupplung hergestellt. Ihr Baustein besteht aus abwechselnden Donor- und Akzeptorgruppen und wurde speziell vorgesehen, um leitfähige flexible molekulare Drähte herzustellen. Die Leitfähigkeit wird durch Ziehen einzelner Drähten von der Oberflächen mit der STM-Spitze gemessen. Theoretische Berechnungen der komplexen Bandstruktur der molekularen Drähte bestätigen die experimentellen Ergebnisse und unterstützen dabei die Wichtigkeit der Balance zwischen Akzeptor- und Donorgruppen für die Leitfähigkeit der Drähte.
Basierend auf diesen Resultaten werden neue Strukturen zur Herstellung vorgeschlagen.
Der letzte Teil befasst sich schließlich mit einer unimolekularen Reaktion, die zur Erzeugung einer anomalen Kombination von Pentagon- und Heptagonringen in einem einzelnen organischen Molekül führt. Solche 5-7-Einheiten sind analog zu Stone-Wales-Defekten in Graphen und können elektronische Eigenschaften beachtlich ändern. Die exakte intramolekulare Struktur der Reaktionsprodukte wird durch hochauflösende STM-Bildgebung mit funktionalisierter Spitze eindeutig zugeordnet und zusätzlich durch DFT-Rechnungen bestätigt. / Polycyclic organic molecules and their derivatives present the class of nanostructures that are currently in the focus of scientific research due to their perspectives for the versatile applications in molecular and organic electronics. To exploit their unique properties to full extent, one has to understand the behavior of molecular systems at the nanoscale and to develop a set of fabrication methods. In this work, molecular nanostructures are fabricated using the bottom-up on-surface synthesis approach, which allows precision of the desired products and control over their properties through careful precursors design. To study the reaction flow and the properties of the formed structures, scanning tunneling microscopy (STM) at low temperature and in ultra-high vacuum is the tool of choice. In this work, three molecular systems are studied in detail, with the focus of fabricating atomically precise nanostructures with tailored properties.
A cyclodehydrogenation reaction is successfully applied to synthesize an asymmetric starphene molecule in the first part of the work. It is then shown that this molecule can function as a unimolecular NAND logic gate with its response to the attached single Au atoms measured as the position of the electronic resonance. A combination of the atomic and molecular lateral manipulation with the STM tip and scanning tunneling spectroscopy (STS) is used to demonstrate this behavior. The effect of the controllable shifting of the molecular resonances is due to the asymmetric shape of the starphene molecule and was initially predicted theoretically.
More complex structures, molecular wires, are presented in the second part of the work by using the surface-assisted Ullmann coupling reaction. The monomer unit, consisting of the alternant donor and acceptor parts, was specifically designed to achieve highly-conductive flexible molecular wires. The conductance is measured by pulling the single wires with the STM tip off the surface. Theoretical calculations of the complex band structure of the wires confirm the obtained results and support the discussion of the importance of the balance between the strength of acceptor and donor units for the conductance of the resultant wires. Based on this, some model structures are proposed.
Finally, the last part deals with a unimolecular reaction to create an anomalous combination of pentagon and heptagon rings in a single organic molecule. Such 5-7 moieties are analogous to the Stone-Wales defects in graphene and may significantly alter the electronic properties. The precise intramolecular structure of the reaction products is unambiguously assigned by high-resolution STM imaging with functionalized tips and further confirmed by DFT calculations.
|
4 |
Étude par ARPES et STS des propriétés éléctroniques de réseaux métalliques et organiques nanostructurés / Electronic properties of nanostructured metallic and organic interfaces studied by ARPES and STSVasseur, Guillaume 13 November 2014 (has links)
Dans ce travail nous démontrons, au travers de deux études, l'intérêt fondamental du couplage des techniques de photoémission résolue en angle (ARPES) et de spectroscopie tunnel (STS) dans l'analyse des propriétés électroniques d'interfaces nanostructurées. Dans la première partie, nous présentons une méthodologie permettant de déduire le potentiel de surface induit par la reconstruction triangulaire d'une monocouche d'Ag/Cu(111). Cette méthode est basée sur la mesure des gaps caractérisant la structure de bande de l'état de Shockley du système aux points de haute symétrie de la zone de Brillouin. L'évaporation d'adatomes de potassium permet d'augmenter le nombre de gaps accessibles en photoémission en décalant les bandes vers les états occupés. Dans un modèle d'électrons presque libres, leur amplitude nous donne accès aux premières composantes de Fourier du potentiel. La reconstruction de ce dernier dans l'espace direct nous permet ensuite de calculer la densité d'états locale que nous comparons aux mesures de conductance STS. La seconde partie est consacrée à l'étude de la croissance et des propriétés électroniques des molécules de 1,4-dibromobenzène (DBB) et 1,4-diiodobenzène (DIB) évaporées sur Cu(110). Leur dépôt à température ambiante sur la surface entraîne la déshalogénation des molécules et la formation de phases organométalliques. A 200°C, le système polymérise pour former des chaînes unidimensionnelles de poly(p-phénylène) parfaitement alignées. Les mesures ARPES révèlent l'existence d'une bande pi unidimensionnelle d'états HOMOs dispersant sous le niveau de Fermi. En STS, nous observons également, pour des petites chaînes, le confinement des états LUMOs dans la partie inoccupée du spectre. Le déconfinement de ces états pour les grandes chaînes conduit à la formation d'une bande continue croisant le niveau de Fermi, conférant au polymère un caractère métallique 1D. Le gap HOMO-LUMO est alors mesuré à 1.15 eV / In this work, through two different studies, we demonstrate the fundamental interest in the coupling of angle resolved photoemission (ARPES) and scanning tunneling spectroscopy (STS) to investigate the electronic properties of nanostructured interfaces. In the first part we present a methodology to determine the surface potential of the triangular reconstructed one monolayer of Ag/Cu(111) interface from ARPES. This method is based on the measurement of the Shockley state band structure’s gaps at the high symmetry points of the Brillouin zone. Deposition of potassium adatoms allows us to shift the surface state towards higher binding energies in order to increase the number of accessible gaps in photoemission. From the magnitude of these gaps we deduce the two first Fourier components of the potential felt by electrons using the nearly free electron model. Then we reconstruct it and calculate the local density of states in order to compare it with the conductance maps probed by STS. In the second part we report the study of the growth and the electronic properties of the two molecules 1,4-dibromobenzene (DBB) and 1,4-diiodobenzene (DIB) evaporated on Cu(110). For room temperature deposition, we first observe their deshalogenation and the formation of an intermediate organometallic phase. Then, above 200°C, the system polymerizes into a long-range ordered array of one dimensional poly(p-phenylene) polymer. ARPES intensity maps allowed us to identify a one dimensional graphene-like strongly dispersive pi-band below the Fermi energy. By STS we also observed LUMOs confined states for small chains over the Fermi level. The loss of confinement for long chains induces the formation of a continuous dispersive band which crosses the Fermi energy, conferring a 1D metallic character to the polymer. The HOMO-LUMO gap is found to be 1.15 eV
|
Page generated in 0.0487 seconds