• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 789
  • 358
  • 98
  • 48
  • 46
  • 22
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1664
  • 1664
  • 527
  • 315
  • 268
  • 257
  • 233
  • 191
  • 169
  • 155
  • 132
  • 125
  • 120
  • 111
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Rapid Fabrication Techniques for Anatomically-Shaped Calcium Polyphosphate Substrates for Implants to Repair Osteochondral Focal Defects

Wei, Christina Yi-Hsuan January 2007 (has links)
The purpose of the present study is to develop techniques for manufacturing anatomically-shaped substrates of implants made from calcium polyphosphate (CPP) ceramic. These substrates have tissue-engineered cartilage growing on their top surfaces and can be used as implants for osteochondral focal defect repair. While many research groups have been fabricating such substrates using standard material shapes, e.g., rectangles and circular discs, it is considered beneficial to develop methods that can be integrated in the substrate fabrication process to produce an implant that is specific to a patient’s own anatomy (as obtained from computer tomography data) to avoid uneven and/or elevated stress distribution that can affect the survival of cartilage. The custom-made, porous CPP substrates were fabricated with three-dimensional printing (3DP) and computer numerically controlled (CNC) machining for the first time to the best of the author’s knowledge. The 3DP technique was employed in two routines: indirect- and direct-3DP. In the former, 3DP was used to fabricate molds for pre-shaping of the CPP substrates from two different powder size ranges (<75 μm and 106-150 μm). In the latter, CPP substrates were produced directly from the retrofitted 3DP apparatus in a layer-by-layer fashion from 45-75 μm CPP powder with a polymeric binder. The prototyped samples were then sintered to obtain the required porosity and mechanical properties. These substrates were characterized in terms of their dimensional shrinkage and density. Also, SEM images were used to assess the particle distribution and neck and bond formations. The substrates produced using the indirect-3DP method yielded densities (<75 μm: 66.28 ± 11.62% and 106-150 μm: 65.87 ± 6.12%), which were comparable to the substrates used currently and with some success in animal studies. Geometric adjustment factors were devised to compensate for the slight expansion inherent in the 3DP mold fabricating process. These equations were used to bring the plaster molds into true dimension. The direct-3DP method has proven to be the ultimate choice due to its ability to produce complex anatomically-shaped substrates without the use of a chemical solvent. In addition, it allows for precise control of both pore size and internal architectures of the substrates. Thus, the direct-3DP was considered to be superior than the indirect-3DP as a fabrication method. In the alternative CNC machining approach to fabrication, the ability to machine the CPP ceramic was feasible and by careful selection of the machining conditions, anatomically-shaped CPP substrates were produced. To develop strategies for optimizing the machining process, a mechanistic model was developed based on curve fitting the average cutting forces to determine the cutting coefficients for CPP. These cutting coefficients were functions of workpiece material, axial depth of cut, chip width, and cutter geometry. To explore the utility of this modelling approach, cutting forces were predicted for a helical ball-end mill and compared with experimental results. The cutting force simulation exhibits good agreement in predicting the fundamental force magnitude and general shape of the actual forces. However, there were some discrepancies between the predicted and measured forces. These differences were attributed to internal microstructure defects, density gradients, and the use of a shear plane model in force prediction that was not entirely appropriate for brittle materials such as CPP. The present study successfully developed 3DP and CNC fabrication methods for manufacturing anatomically-shaped CPP substrates. Future studies were recommended to explore further optimization of these fabrication methods and to demonstrate the utility of accurate substrates shapes to the clinical application of focal defect repair implants.
602

CAD methodologies for low power and reliable 3D ICs

Lee, Young-Joon 02 April 2013 (has links)
The main objective of this dissertation is to explore and develop computer-aided-design (CAD) methodologies and optimization techniques for reliability, timing performance, and power consumption of through-silicon-via(TSV)-based and monolithic 3D IC designs. The 3D IC technology is a promising answer to the device scaling and interconnect problems that industry faces today. Yet, since multiple dies are stacked vertically in 3D ICs, new problems arise such as thermal, power delivery, and so on. New physical design methodologies and optimization techniques should be developed to address the problems and exploit the design freedom in 3D ICs. Towards the objective, this dissertation includes four research projects. The first project is on the co-optimization of traditional design metrics and reliability metrics for 3D ICs. It is well known that heat removal and power delivery are two major reliability concerns in 3D ICs. To alleviate thermal problem, two possible solutions have been proposed: thermal-through-silicon-vias (T-TSVs) and micro-fluidic-channel (MFC) based cooling. For power delivery, a complex power distribution network is required to deliver currents reliably to all parts of the 3D IC while suppressing the power supply noise to an acceptable level. However, these thermal and power networks pose major challenges in signal routability and congestion. In this project, a co-optimization methodology for signal, power, and thermal interconnects in 3D ICs is presented. The goal of the proposed approach is to improve signal, thermal, and power noise metrics and to provide fast and accurate design space explorations for early design stages. The second project is a study on 3D IC partition. For a 3D IC, the target circuit needs to be partitioned into multiple parts then mapped onto the dies. The partition style impacts design quality such as footprint, wirelength, timing, and so on. In this project, the design methodologies of 3D ICs with different partition styles are demonstrated. For the LEON3 multi-core microprocessor, three partitioning styles are compared: core-level, block-level, and gate-level. The design methodologies for such partitioning styles and their implications on the physical layout are discussed. Then, to perform timing optimizations for 3D ICs, two timing constraint generation methods are demonstrated that lead to different design quality. The third project is on the buffer insertion for timing optimization of 3D ICs. For high performance 3D ICs, it is crucial to perform thorough timing optimizations. Among timing optimization techniques, buffer insertion is known to be the most effective way. The TSVs have a large parasitic capacitance that increases the signal slew and the delay on the downstream. In this project, a slew-aware buffer insertion algorithm is developed that handles full 3D nets and considers TSV parasitics and slew effects on delay. Compared with the well-known van Ginneken algorithm and a commercial tool, the proposed algorithm finds buffering solutions with lower delay values and acceptable runtime overhead. The last project is on the ultra-high-density logic designs for monolithic 3D ICs. The nano-scale 3D interconnects available in monolithic 3D IC technology enable ultra-high-density device integration at the individual transistor-level. The benefits and challenges of monolithic 3D integration technology for logic designs are investigated. First, a 3D standard cell library for transistor-level monolithic 3D ICs is built and their timing and power behavior are characterized. Then, various interconnect options for monolithic 3D ICs that improve design quality are explored. Next, timing-closed, full-chip GDSII layouts are built and iso-performance power comparisons with 2D IC designs are performed. Important design metrics such as area, wirelength, timing, and power consumption are compared among transistor-level monolithic 3D, gate-level monolithic 3D, TSV-based 3D, and traditional 2D designs.
603

Design exchange formats for assessing ohmic drops and thermal profiles in three dimensional integrated circuits

Bazaz, Rishik 29 March 2013 (has links)
dimensional integrated circuits (3D ICs) fabricated with through-silicon vias (TSVs) have smaller planar dimensions, shorter wire length, and better performance than 2D ICs. Heat dissipation causing temperature increase has posed new challenges for design of 3D integrated circuits (IC). In addition to the thermal problem, 3D ICs also require careful design of power grids/network because many inter-tier resistive through-silicon vias in 3D IC can cause larger voltage drop than 2D ICs. The performance optimization of a 3D stack requires validation of thermal and electrical integrity during the co-design. Many 3D stacks will combine digital and analog circuitry, requiring a strong mixed-signal design approach. This will require close collaboration between different domains of circuit fabrication which traditionally have been working separately. Hence there must be some standards to facilitate smooth and effective design of 3D ICs. In this thesis, we perform steady-state electrical and thermal simulations to analyze the properties of a 3D stack. We optimize electrical and thermal performance using genetic algorithm to achieve optimized power map profile for minimizing voltage drop and temperature, which can benefit both thermal and power integrity management. This thesis presents initial efforts in designing such standards. Steady state electrical and thermal simulations are performed to demonstrate the necessary information that needs to be exchanged between the dies to ensure adequate co-design. The main purpose of a Design Exchange Format (DEF) between dies is to permit sharing of information necessary for design by external parties without disclosing their intellectual property (IP). The requirements of the standards should be the minimum necessary to produce satisfactory answers. Producing such models is just a customer support function. The role of the standards is to facilitate the transfer of information through a compact model, not necessarily to build one.
604

Rapid Fabrication Techniques for Anatomically-Shaped Calcium Polyphosphate Substrates for Implants to Repair Osteochondral Focal Defects

Wei, Christina Yi-Hsuan January 2007 (has links)
The purpose of the present study is to develop techniques for manufacturing anatomically-shaped substrates of implants made from calcium polyphosphate (CPP) ceramic. These substrates have tissue-engineered cartilage growing on their top surfaces and can be used as implants for osteochondral focal defect repair. While many research groups have been fabricating such substrates using standard material shapes, e.g., rectangles and circular discs, it is considered beneficial to develop methods that can be integrated in the substrate fabrication process to produce an implant that is specific to a patient’s own anatomy (as obtained from computer tomography data) to avoid uneven and/or elevated stress distribution that can affect the survival of cartilage. The custom-made, porous CPP substrates were fabricated with three-dimensional printing (3DP) and computer numerically controlled (CNC) machining for the first time to the best of the author’s knowledge. The 3DP technique was employed in two routines: indirect- and direct-3DP. In the former, 3DP was used to fabricate molds for pre-shaping of the CPP substrates from two different powder size ranges (<75 μm and 106-150 μm). In the latter, CPP substrates were produced directly from the retrofitted 3DP apparatus in a layer-by-layer fashion from 45-75 μm CPP powder with a polymeric binder. The prototyped samples were then sintered to obtain the required porosity and mechanical properties. These substrates were characterized in terms of their dimensional shrinkage and density. Also, SEM images were used to assess the particle distribution and neck and bond formations. The substrates produced using the indirect-3DP method yielded densities (<75 μm: 66.28 ± 11.62% and 106-150 μm: 65.87 ± 6.12%), which were comparable to the substrates used currently and with some success in animal studies. Geometric adjustment factors were devised to compensate for the slight expansion inherent in the 3DP mold fabricating process. These equations were used to bring the plaster molds into true dimension. The direct-3DP method has proven to be the ultimate choice due to its ability to produce complex anatomically-shaped substrates without the use of a chemical solvent. In addition, it allows for precise control of both pore size and internal architectures of the substrates. Thus, the direct-3DP was considered to be superior than the indirect-3DP as a fabrication method. In the alternative CNC machining approach to fabrication, the ability to machine the CPP ceramic was feasible and by careful selection of the machining conditions, anatomically-shaped CPP substrates were produced. To develop strategies for optimizing the machining process, a mechanistic model was developed based on curve fitting the average cutting forces to determine the cutting coefficients for CPP. These cutting coefficients were functions of workpiece material, axial depth of cut, chip width, and cutter geometry. To explore the utility of this modelling approach, cutting forces were predicted for a helical ball-end mill and compared with experimental results. The cutting force simulation exhibits good agreement in predicting the fundamental force magnitude and general shape of the actual forces. However, there were some discrepancies between the predicted and measured forces. These differences were attributed to internal microstructure defects, density gradients, and the use of a shear plane model in force prediction that was not entirely appropriate for brittle materials such as CPP. The present study successfully developed 3DP and CNC fabrication methods for manufacturing anatomically-shaped CPP substrates. Future studies were recommended to explore further optimization of these fabrication methods and to demonstrate the utility of accurate substrates shapes to the clinical application of focal defect repair implants.
605

The Overnight City. Future Explorations of Density and Population Growth in a Diminishing World

Malboeuf, Eric 30 July 2009 (has links)
Land is our planet’s scarcest resource. With all the combined advances in our civilizations and their respective technologies, we have yet as a society to fully understand our precarious situation within our diminishing livable planetary surface. We also live today within a world in constant stages of change. With rapid population growth on a global scale, and its resulting increases in urban density, our available usable living space is greatly becoming smaller and our lives more crowded and condensed. Following upon our urban centers, this thesis aims at exploring the effects of these global phenomena of overcrowding and overpopulation especially within the time remaining before we, as part of a developed society, witness the ground below our feet gradually disappear. Montreal City is one developed world urban center ready to receive this next evolutionary step in urban growth and it is historically no stranger to architectural experimentation. Expanding the city’s infrastructures through the third dimension will allow greater freedom in the urban sculpture of this future face of our growing urban worlds. This will be the insertion of a new population-absorbing building and urban typology. This will be the return of the megastructure and the revival of an old visionary architectural language that will advance the exploration of the impact of growth and urban concentration.
606

Analysis of Three-Dimensional Cracks in Submodels

Karlsson, David January 2007 (has links)
A common technique to evaluate load paths in complex structures is to perform FE-calculations with relative large elements. This procedure gives no information regarding stress concentrations at e.g. holes or radius but this phenomenon can later on be investigated in details with local individual submodels. Displacements is taken from the global model and used to analyse stress concentrations and crack driving parameters in the submodel. Today, the crack controlling stress intensity factors are in general cases obtained from handbook solutions of elementary cases. This method requires engineering judgements in a conservative manner and one way to improve the solution is to model the crack in its correct surroundings in a local three-dimensional submodel. This master thesis is focused on the development of an automated support for analysing three-dimensional cracks in submodels. The results from a global Nastran model can be imported to Trinitas and used for a more accurate stress and fatigue life analysis in a local model. Here a three-dimensional crack tip subdomain can be generated inside an eight point brick volume. The crack tip subdomain is specially designed and adjusted for accurate determination of stress intensity factors along the crack front. For example, all points are adjusted with respect to the brick volume and the crack size, triangular wedge elements are applied around the crack tip, the midpoints for these elements are moved to quarter points and the crack front is curved. The crack tip subdomain is validated against several reference cases and shows sufficiently good results with respect to the stress intensity factor. Finally, the automated crack tip subdomain generation is applied to a geometrically complex part of a main wing carry-through bulkhead of a fighter aircraft in order to show the applicability of the procedure in an industrial environment.
607

The Overnight City. Future Explorations of Density and Population Growth in a Diminishing World

Malboeuf, Eric 30 July 2009 (has links)
Land is our planet’s scarcest resource. With all the combined advances in our civilizations and their respective technologies, we have yet as a society to fully understand our precarious situation within our diminishing livable planetary surface. We also live today within a world in constant stages of change. With rapid population growth on a global scale, and its resulting increases in urban density, our available usable living space is greatly becoming smaller and our lives more crowded and condensed. Following upon our urban centers, this thesis aims at exploring the effects of these global phenomena of overcrowding and overpopulation especially within the time remaining before we, as part of a developed society, witness the ground below our feet gradually disappear. Montreal City is one developed world urban center ready to receive this next evolutionary step in urban growth and it is historically no stranger to architectural experimentation. Expanding the city’s infrastructures through the third dimension will allow greater freedom in the urban sculpture of this future face of our growing urban worlds. This will be the insertion of a new population-absorbing building and urban typology. This will be the return of the megastructure and the revival of an old visionary architectural language that will advance the exploration of the impact of growth and urban concentration.
608

A volumetric approach to segmentation and texture characterisation of ultrasound images

Muzzolini, Russell Ennio 01 January 1997 (has links)
Visual interpretation of noisy images is not an easy problem. This is certainly apparent with ultrasound images. Due to the noise inherent in the images, it is often the case that discrepancies as to location of object boundaries and detection of different tissues arise even among highly trained physicians. The relatively low cost and short image acquisition time, however, make ultrasound an attractive imaging modality. Currently, diagnostic evaluation of ultrasound images is performed on two-dimensional (2D) cross-sections of the object of interest. No depth information is available and there is no way of viewing the outer surface of the object. The only way for a physician to visualise the entire object is by mentally reconstructing the object based on a series of a 2D images as well as prior expectations of the morphology of the object. In the case of abnormal or diseased growth, the physician's expectations often do not correspond to the actual morphology of the object. However, the use of three-dimensional (3D) data acquisition and visualisation may be used to overcome these problems. The present work addresses a number of difficulties in processing 3D ultrasound data. This includes special treatment of the volumetric ultrasound data obtained from a 3D probe, determination of 3D features of the different tissue types present in the ultrasound data and identification and localisation of objects (segmentation) in the volumetric ultrasound data. Experimental results obtained from synthesised and real ultrasound data demonstrate that the present work contributes significantly to the use of ultrasound imaging as a diagnostic tool. As well, the present work can be applied to different imaging modalities or different applications areas and is thus beneficial to the area of biomedical image processing, in general.
609

Three-dimensional Characterization of Inherent and Induced Sand Microstructure

Yang, Xuan 28 November 2005 (has links)
In the last decade, a significant amount of research has been performed to characterize the microstructure of unsheared and sheared triaxial sand specimens to advance the understanding of the engineering behavior of soils. However, most of the research has been limited to two-dimensional (2-D) image analysis of section planes that resulted in loss of information regarding the skeleton of the soil (pore structure) and other attributes of the three-dimensional (3-D) microstructure. In this research, the 3-D microstructures of triaxial test specimens were, for the first time, characterized. A serial sectioning technique was developed for obtaining 3-D microstructure from 2-D sections of triaxial test specimens. The mosaic technique was used to get high-resolution large field of view images. Various 3-D characterization parameters were used to study the microstructures of the specimens. To study the preparation method induced variation in soil microstructure, two specimens prepared with air pluviation and moist tamping methods were preserved with epoxy impregnation. A coupon was cut from the center of each specimen, and following a serial sectioning and image capture process, the 3-D structure was reconstructed. To study the evolution of structure during shearing tests, two additional specimens prepared to the same initial conditions with the same methods were subjected to axial compression loading under constant confining pressure up to an axial strain level of 14%. After shearing, the structure of these specimens were also preserved and analyzed following the same procedures as the unsheared specimens. The evolution of the pore structures was investigated accordingly. It was found that generally, moist tamped specimens were initially less uniform but had a more isotropic structure than air pluviated specimens. The standard deviations of 2-D local void ratio and 3-D pore size in dilated regions of sheared air pluviated and moist-tamped specimens were found to be smaller than those of as-consolidated specimens at a given void ratio. Tortuosity decreased with increasing pore size. It was also evident that the soil structures evolved differently depending on the initial structure. Comparison between 2-D and 3-D results indicated that it is not sufficient to use 2-D section information for characterizing some microstructural features.
610

Quantitative Characterization of Processing-Microstructure-Properties Relationships in Pressure Die-Cast Mg Alloys

Lee, Soon Gi 06 July 2006 (has links)
The central goal of this research is to quantitatively characterize the relationships between processing, microstructure, and mechanical properties of important high-pressure die-cast (HPDC) Mg-alloys. For this purpose, a new digital image processing technique for automatic detection and segmentation of gas and shrinkage pores in the cast microstructure is developed and it is applied to quantitatively characterize the effects of HPDC process parameters on the size distribution and spatial arrangement of porosity. To get better insights into detailed geometry and distribution of porosity and other microstructural features, an efficient and unbiased montage based serial sectioning technique is applied for reconstruction of three-dimensional microstructures. The quantitative microstructural data have been correlated to the HPDC process parameters and the mechanical properties. The analysis has led to hypothesis of formation of new type of shrinkage porosity called, gas induced shrinkage porosity that has been substantiated via simple heat transfer simulations. The presence of inverse surface macrosegregation has been also shown for the first time in the HPDC Mg-alloys. An image analysis based technique has been proposed for simulations of realistic virtual microstructures that have realistic complex pore morphologies. These virtual microstructures can be implemented in the object oriented finite elements framework to model the variability in the fracture sensitive mechanical properties of the HPDC alloys.

Page generated in 0.0815 seconds