Spelling suggestions: "subject:"threefold"" "subject:"thresholds""
1 |
Stability Conditions on Threefolds and Space CurvesSchmidt, Benjamin 22 September 2016 (has links)
No description available.
|
2 |
Actions hyperboliques du groupe multiplicatif sur des variétés affines : espaces exotiques et structures locales / Hyperbolic actions of the multiplicative group on affine varieties : exotic spaces and local structuresPetitjean, Charlie 30 March 2015 (has links)
Cette thèse est consacré à l'étude des T-variétés affines à l'aide de la présentation due à Altmann et Hausen. On s'intéresse plus particulièrement au cas des actions hyperboliques du groupe multiplicatif Gm. Dans une première partie, on étudie les espaces affines exotiques, c'est-à-dire des variétés affines lisses et contractiles, en supposant de plus qu'elles sont munies d'une action de Gm. En particulier, dans le cas de dimension 3, on réinterprète la construction des variétésde Koras-Russell en terme de diviseurs polyédraux, et on donne des constructions de variétés affines lisses et contractiles en dimension supérieure à 3.Dans une deuxième partie, on introduit la propriété pour une G-variété d'être G-uniformément rationnelle, c'est-à-dire que tout point de cette variété admet un voisinage ouvert G-stable, qui est isomorphe de manière equivariante à un ouvert G-invariant de l'espace affine. En particulier, on exhibera des Gm-variétés qui sont lisses et rationnelles mais qui ne sont pas Gm-uniformément rationnelle. / This thesis is devoted to the study of affine T-varieties using the Altmann-Hausen presentation. We are especially interested in the case of hyperbolic actions of the multiplicative group Gm. In the first part, exotic affine spaces are studied, that is, smooth contractible affine varieties, assuming in addition that they are endowed with a Gm-action. In particular, in the case of dimension 3, we reinterpret the construction of Koras-Russell threefolds in terms of polyhedral divisors andwe give constructions of smooth contractible affine varieties and in dimensionslarger than 3.In the second part we consider the property of G-uniform rationality for a G-variety. This means that every point of this variety there exists an open G-stable neighborhood, which is equivariantly somorphic to a G-stable open subset of the affine space. In particular we will exhibit Gm-varieties which are smooth and rational but not Gm-uniformly rational.
|
3 |
Hypersurfaces with defect and their densities over finite fieldsLindner, Niels 20 February 2017 (has links)
Das erste Thema dieser Dissertation ist der Defekt projektiver Hyperflächen. Es scheint, dass Hyperflächen mit Defekt einen verhältnismäßig großen singulären Ort besitzen. Diese Aussage wird im ersten Kapitel der Dissertation präzisiert und für Hyperflächen mit beliebigen isolierten Singularitäten über einem Körper der Charakteristik null, sowie für gewisse Klassen von Hyperflächen in positiver Charakteristik bewiesen. Darüber hinaus lässt sich die Dichte von Hyperflächen ohne Defekt über einem endlichen Körper abschätzen. Schließlich wird gezeigt, dass eine nicht-faktorielle Hyperfläche der Dimension drei mit isolierten Singularitäten stets Defekt besitzt. Das zweite Kapitel der Dissertation behandelt Bertini-Sätze über endlichen Körpern, aufbauend auf Poonens Formel für die Dichte glatter Hyperflächenschnitte in einer glatten Umgebungsvarietät. Diese wird auf quasiglatte Hyperflächen in simpliziellen torischen Varietäten verallgemeinert. Die Hauptanwendung ist zu zeigen, dass Hyperflächen mit einem in Relation zum Grad großen singulären Ort die Dichte null haben. Weiterhin enthält das Kapitel einen Bertini-Irreduzibilitätssatz, der auf einer Arbeit von Charles und Poonen beruht. Im dritten Kapitel werden ebenfalls Dichten über endlichen Körpern untersucht. Zunächst werden gewisse Faserungen über glatten projektiven Basisvarietäten in einem gewichteten projektiven Raum betrachtet. Das erste Resultat ist ein Bertini-Satz für glatte Faserungen, der Poonens Formel über glatte Hyperflächen impliziert. Der letzte Abschnitt behandelt elliptische Kurven über einem Funktionskörper einer Varietät der Dimension mindestens zwei. Die zuvor entwickelten Techniken ermöglichen es, eine untere Schranke für die Dichte solcher Kurven mit Mordell-Weil-Rang null anzugeben. Dies verbessert ein Ergebnis von Kloosterman. / The first topic of this dissertation is the defect of projective hypersurfaces. It is indicated that hypersurfaces with defect have a rather large singular locus. In the first chapter of this thesis, this will be made precise and proven for hypersurfaces with arbitrary isolated singularities over a field of characteristic zero, and for certain classes of hypersurfaces in positive characteristic. Moreover, over a finite field, an estimate on the density of hypersurfaces without defect is given. Finally, it is shown that a non-factorial threefold hypersurface with isolated singularities always has defect. The second chapter of this dissertation deals with Bertini theorems over finite fields building upon Poonen’s formula for the density of smooth hypersurface sections in a smooth ambient variety. This will be extended to quasismooth hypersurfaces in simplicial toric varieties. The main application is to show that hypersurfaces admitting a large singular locus compared to their degree have density zero. Furthermore, the chapter contains a Bertini irreducibility theorem for simplicial toric varieties generalizing work of Charles and Poonen. The third chapter continues with density questions over finite fields. In the beginning, certain fibrations over smooth projective bases living in a weighted projective space are considered. The first result is a Bertini-type theorem for smooth fibrations, giving back Poonen’s formula on smooth hypersurfaces. The final section deals with elliptic curves over a function field of a variety of dimension at least two. The techniques developed in the first two sections allow to produce a lower bound on the density of such curves with Mordell-Weil rank zero, improving an estimate of Kloosterman.
|
Page generated in 0.0398 seconds