• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 25
  • 23
  • 11
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 310
  • 69
  • 58
  • 42
  • 38
  • 35
  • 29
  • 29
  • 27
  • 27
  • 26
  • 25
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Turboelectric distributed propulsion system modelling

Liu, Chengyuan January 2013 (has links)
The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine performances, and estimating weights of the electric components. The method is first applied to model a turboshaft-driven TeDP system, which produces thrust only by the propulsors array. Results show that by distributing an array of propulsors that ingest a relatively large mass flow directly produces an 8% fuel burn saving relative to the commercial N+2 aircraft (such as the SAX-40 airplane). Ingesting boundary layer achieves a 7-8% fuel saving with a well-designed intake duct and the improved inlet flow control technologies. However, the value is sensitive to the duct losses and fan inlet distortion. Poor inlet performance can offset or even overwhelm this potential advantage. The total weight of the electric system would be around 5,000-7,000 kg. The large mass penalties further diminish benefits of the superconducting distributed propulsion system. The method is then applied to model a turbofan-driven TeDP system, which produces thrust by both the propulsors array and the core-engines. Results show that splitting the thrust between propulsors and core-engines could have a beneficial effect in fuel savings, when installation effects are neglected. The optimised thrust splitting ratio is between 60-90%, the final value depends on the propulsor intake pressure losses and the TeDP system bypass ratio. Moreover, splitting the thrust can reduce the weight of the electric system with the penalty of the increased core-engine weight. In short, if the power density of the superconducting system were high enough, turboshaft-driven TeDP would be preferable to power the N3-X aircraft.
112

GEOMETRIC AND KINEMATIC EVOLUTION OF THE BESSEMER TRANSVERSE ZONE, ALABAMA ALLEGHANIAN THRUST BELT

Brewer, Margaret Colette 01 January 2004 (has links)
Transverse zones are important syn-kinematic components of thrust belt development. Various scales of data were utilized to develop three-dimensional geometric and kinematic models for the Bessemer transverse zone (BTZ) of the Alabama Alleghanian thrust belt. Regional analysis of the BTZ began with the examination of geologic maps (1:250,000, 1:48,000, and 1:24,000 scales), seismic reflection profiles, well data, and previous stratigraphic research. All Paleozoic-age stratigraphic contacts, major thrust faults and associated folds, and various unnamed minor structures were compiled to create two strike-perpendicular, and five-strike parallel, cross sections transecting the extent of the BTZ at a scale of 1:100,000. The balanced and viable cross sections were used to create palinspastic maps of the BTZ. The deformed cross sections and geologic maps, and the restored cross sections and palinspastic maps, model the post- and prekinematic geometry of the transverse zone, respectively. Additional geological fieldwork in the northwestern part of the BTZ permitted the construction of geologic maps (1:24,000 scale) documenting cross-strike links (the fundamental unit of transverse zones) exposed at the present erosional surface (Concord and McCalla 7.5 quadrangles). Balanced and viable geologic cross sections (1:24,000 scale) were constructed from these data and placed parallel and perpendicular to strike of cross-strike links. The cross sections were restored and used to create 1:24,000-scale palinspastic maps of the cross-strike links in this part of the BTZ. The cross sections and maps model the three-dimensional geometry of the cross-strike links comprising the BTZ. Sub-allochthon basement structures are present beneath the thrust transport vectors of cross-strike links in the BTZ, indicating genetic relationships between transverse zone structures and underlying basment structures. Basement-graben related changes in the stratigraphic thickness of the decollement-host horizon are interpreted as having localized and facilitated growth of the Bessemer mushwad, a ductile duplex in the allochthon. The muswad localized the structural position of two thrust sheets and several cross-strike links in the BTZ. Geologic map patterns of the transverse zone indicate a break-back deformation sequence for the BTZ, interpreted as a response to decollement propagation through an allochthon-spanning weak decollement-host horizon, which had large stratigraphic thickness variations in basement grabens.
113

Low-thrust trajectory design techniques with a focus on maintaining constant energy

Hernandez, Sonia, active 21st century 15 September 2014 (has links)
Analytical solutions to complex trajectory design problems are scarce, since only a few specific cases allow for closed-form solutions. The main purpose of this dissertation is to design simple algorithms for trajectory design using continuous thrust, with a focus on low-thrust applications. By “simple” here we seek to achieve algorithms that either admit an analytical solution, or require minimal input by the user and minimal computation time. The three main contributions of this dissertation are: designing Lyapunov-based closed-loop guidance laws for orbit transfers, finding semi-analytical solutions using a constant magnitude thrust, and perturbation theory for approximate solutions to low-thrust problems. The technical aspect that these problems share in common is that they all use, fully or partially, a thrusting model in which the energy of the system is kept constant. Many orbit transfer problems are shown to be solved with this thrusting protocol. / text
114

The conceptual design of novel future UAV's incorporating advanced technology research components

Clarke, Adrian James January 2011 (has links)
There is at present some uncertainty as to what the roles and requirements of the next generation of UAVs might be and the configurations that might be adopted. The incorporation of technological features on these designs is also a significant driving force in their configuration, efficiency, performance abilities and operational requirements. The objective of this project is thus to provide some insight into what the next generation of technologies might be and what their impact would be on the rest of the aircraft. This work involved the conceptual designs of two new relevant full-scale UAVs which were used to integrate a select number of these advanced technologies. The project was a CASE award which was linked to the Flaviir research programme for advanced UAV technologies. Thus, the technologies investigated during this study were selected with respect to the objectives of the Flaviir project. These were either relative to those already being developed as course of the Flaviir project or others from elsewhere. As course of this project, two technologies have been identified and evaluated which fit this criterion and show potential for use on future aircraft. Thus we have been able to make a contirubtion knowledge in two gaps in current aerospace technology. The first of these studies was to investigate the feasibility of using a low cost mechanical thrust vectoring system as used on the X-31, to replace conventional control surfaces. This is an alternative to the fluidic thrust vectoring devices being proposed by the Flaviir project for this task. The second study is to investigate the use of fuel reformer based fuel cell system to supply power to an all-electric power train which will be a means of primary propulsion. A number of different fuels were investigated for such a system with methanol showing the greatest promise and has been shown to have a number of distinct advantages over the traditional fuel for fuel cells (hydrogen). Each of these technologies was integrated onto the baseline conceptual design which was identified as that most suitable to each technology. A UCAV configuration was selected for the thrust vectoring system while a MALE configuration was selected for the fuel cell propulsion system. Each aircraft was a new design which was developed specifically for the needs of this project. Analysis of these baseline configurations with and without the technologies allowed an assessment to be made of the viability of these technologies. The benefits of the thrust vectoring system were evaluated at take-off, cruise and landing. It showed no benefit at take-off and landing which was due to its location on the very aft of the airframe. At cruise, its performance and efficiency was shown to be comparable to that of a conventional configuration utilizing elevons and expected to be comparable to the fluidic devices developed by the Flaviir project. This system does however offer a number of benefits over many other nozzle configurations of improved stealth due to significant exhaust nozzle shielding.The fuel reformer based fuel cell system was evaluated in both all-electric and hybrid configurations. In the ell-electric configuration, the conventional turboprop engine was completely replaced with an all-electric powertrain. This system was shown to have an inferior fuel consumption compared to a turboprop engine and thus the hybrid system was conceived. In this system, the fuel cell is only used at loiter with the turboprop engine being retained for all other flight phases. For the same quantity of fuel, a reduction in loiter time of 24% was experienced (compared to the baseline turboprop) but such a system does have benefits of reduced emissions and IR signature. With further refinement, it is possible that the performance and efficiency of such a system could be further improved. In this project, two potential technologies were identified and thoroughly analysed. We are therefore able to say that the project objectives have been met and the project has proven worthwhile to the advancement of aerospace technology. Although these systems did not provide the desired results at this stage, they have shown the potential for improvement with further development.
115

Direct-connect performance evaluation of a valveless pulse detonation engine

Wittmers, Nicole K. 12 1900 (has links)
Approved for public release, distribution is unlimited / Operational characteristics of a valveless pulse detonation engine system were characterized by experimental measurements of thrust, fuel flow, and internal gas dynamics. The multi-cycle detonation experiments were performed on an axis-symmetric engine geometry operating on an ethylene/air mixtures. The detonation diffraction process from a small 'initiator' combustor to a larger diameter main combustor in a continuous airflow configuration was evaluated during multi-cycle operation of a pulse detonation engine and was found to be very successful at initiating combustion of the secondary fuel/air mixture at high frequencies. The configuration was used to demonstrate the benefit of generating an overdriven detonation condition near the diffraction plane for enhanced transmission of the larger combustor. Results have shown that the addition of optical sensors, such as tunable diode lasers, to provide fuel profile data are invaluable for providing high fidelity performance results. The performance results demonstrated the ability of the valveless pulse detonation engine to run at efficiencies similar to valved pulse detonation engine geometries and may be a low cost alternative to conventional air-breathing propulsion systems. / Funded By: N00014OWR20226. / Lieutenant, United States Navy
116

Fuel optimal low thrust trajectories for an asteroid sample return mission

Rust, Jack W. 03 1900 (has links)
This thesis explores how an Asteroid Sample Return Mission might make use of solar electric propulsion to send a spacecraft on a journey to the asteroid 1989ML and back. It examines different trajectories that can be used to get an asteroid sample return or similar spacecraft to an interplanetary destination and back in the most fuel-efficient manner. While current plans call for keeping such a spacecraft on the asteroid performing science experiments for approximately 90 days, it is prudent to inquire how lengthening or shortening this time period may affect mission fuel requirements. Using optimal control methods, various mission scenarios have been modeled and simulated. The results suggest that the amount of time that the spacecraft may spend on the asteroid surface can be approximated as a linear function of the available fuel mass. Furthermore, It can be shown that as maximum available thrust is decreased, the radial component of the optimal thrust vector becomes more pronounced.
117

The structural, metamorphic and magmatic evolution of the Greater Himalayan Sequence and Main Central Thrust, Eastern Nepal Himalaya

Streule, Michael January 2009 (has links)
Field observations of the Greater Himalayan Sequence in Eastern Nepal demonstrate a ductile, highly strained package of metamorphic rocks that show extensive evidence of crustal anatexis throughout. These can be distinguished from the Lesser Himalayan sequence below by a distinct reduction in metamorphic grade, an inverted metamorphic sequence and a high strain zone corresponding to the Main Central Thrust. Metamorphic studies are combined with geochronology to demonstrate a protracted period of crustal melting followed by rapid decompression from 18.7 Ma to 15.6 Ma. A metamorphic decompression rate is quantified at c.2mm/yr during this period. This is interpreted to represent exhumation of the Greater Himalayan Sequence by a process of ductile, channelised flow from the mid-crust beneath Tibet. Below a prominent band of kyanite gneiss, previously used to locate the Main Central Thrust, but here mapped within the Greater Himalayan Sequence, partial melting is still exhibited. Here monazites are dated at 10.6 Ma. In the Lesser Himalaya below, allanites record a similar 10.1 Ma event. This implies that following channel flow during the mid-Miocene, the channel widened in the lower-Miocene to incorporate a greater structural thickness. Following these two periods of exhumation and ductile extrusion, separated in time and space, Fission Track studies indicate that much slower, erosion driven exhumation proceeded, at <1 mm/yr. This rate increases slightly in the Pliocene, most likely in response to Northern Hemisphere glaciation; no difference in exhumation is seen across the Greater Himalayan Sequence with respect to the different, earlier, phases of ductile channel flow related exhumation. These results demonstrate the episodic nature of channel flow in the Himalaya and reconcile arguments about the position of the MCT in Eastern Nepal.
118

Creation, Verification, and Validation of a Panel Code for the Analysis of Ship Propellers in a Steady, Uniform Wake

Jennings, Stephen Gregory 05 August 2010 (has links)
This report describes the governing equation and boundary conditions for a marine propeller operating in a uniform flow field of inviscid and irrotational fluid. A method is presented by which the velocity and pressure on the blade surface of the propeller can be numerically simulated, using hyperboloidal, constant strength source and doublet panels. Accuracy of the numerical method is verified through comparison with analytically known results and the ability of the numerical simulation to predict the thrust and torque on a propeller in open water is assessed through comparison with published experimental results. The thrust and torque results for the propeller are near the experimental measurements but do not converge to a common value as the panel size decreases.
119

Modélisation analogique de la déformation des zones en compression et subduction / Modelización analógica de la deformación en las zonas de compresión y subducción / Analogue modelling of deformation in compressive and subduction zones

Driehaus, Lena 25 November 2013 (has links)
Cette thèse présente les résultats et conclusions issues d’une série de modèles analogiques de systèmes de compressif à différentes échelles : Les expériences réalisées à l’échelle crustale montrent que la symétrie de structures compressives, de type plis et chevauchements avec 3 niveaux de décollement, est fortement dépendante de la vitesse de sédimentation. Les résultats ont été appliqués au Subandin Bolivien. Les expériences réalisées à l’échelle lithosphérique simulent la subduction et l’extension arrière-arc dans un système subissant une compression parallèle à la marge continent-océan (COB). Ces modèles démontrent que la différence de densité entre les plaques continentales et océaniques est le paramètre clé pour expliquer l'extension arrière-arc: plus petite est la différence de densité, plus faible est l'extension produite. Les résultats ont été appliqués al ‘Anatolie. Enfin, ces modèles ont été utilisés pour tester la reproductibilité et les limites de la modélisation analogique. / This thesis presents the results and conclusions from a series of analogue modelling of deformation in compressive and subduction zones (crustal scale and lithospheric scale) : The experiments carried out at the crustal scale show that the symmetry of compressive structures, folds and trust belts with 3 levels of décollement is strongly dependent on the rate of sedimentation. The results were applied to the Subandin Bolivian. The experiments carried out at the lithospheric scale simulate subduction and back-arc extension in a system under compression parallel to the continent - ocean margin (COB). These models show that the density ratio between the continental and oceanic plates is the key factor to explain the back-arc extension: as smaller the difference in density is, less extension occurred. The results were applied to Anatolia. Finally, these models were used to test the reproducibility and limits for analog modeling.
120

Analyse des écoulements autour de structures en mouvement forcé de tangage : application à la propulsion instationnaire / Flow analysis around structures in forced pitching motion : application to unsteady propulsion

Moubogha moubogha, Joseph 21 December 2018 (has links)
Le présent travail de thèse s’inscrit dans le contexte fondamental de la propulsion marine instationnaire. Il analyse les performances propulsives des profils de différents rapports d’aspects (envergure par rapport à la corde), en oscillation harmonique de tangage. On modélise la principale partie active d’un système propulsif naturel, tel une nageoire caudale de poisson, par des profils simples, minces et rigides quasiment identiques, à l’exception du rapport d’aspect très important du premier profil (4.8), dit bidimensionnel, et très faible du second (1/6), dit tridimensionnel. Le mouvement de tangage est imposé au tiers de corde, en partant du bord d’attaque des profils immergés dans un écoulement. L’objectif étant de faire varier le nombre de Strouhal, basé sur l’amplitude d’excursion totale du bord de fuite du profil, dans une gamme relativement faible et étroite, où évoluent plusieurs espèces aquatiques. Cette gamme est donc intéressante pour l’étude des systèmes propulsifs artificiels. L’aptitude à la propulsion a été déduite en analysant la structure de l’écoulement induit dans le sillage, et en déterminant l’effort réel exercé par le profil sur l’écoulement. En raison des effets importants de la traînée induite associée aux tourbillons marginaux et de ceux de la traînée visqueuse, inversement proportionnelle au rapport d’aspect, il apparait que les performances propulsives du profil tridimensionnel sont bien moindres que celles du profil bidimensionnel. L’influence des configurations du battement sur les performances propulsives a également été étudiée. / This thesis work is part of the fundamental context of unsteady marine propulsion. The propulsive performances of different aspect ratios (span to corde) profiles, in harmonic pitching motion are analyzed. The main active part of a natural propulsion system, such as a fish caudal fin, is modelled by simple, thin and rigid profiles that are almost identical, with the exception of the very high aspect ratio of the first profile (4.8), called two-dimensional, and very low aspect ratio of the second (1/6), called three-dimensional. The pitching motion is imposed on the third corde, starting from the leading edge of the profiles immersed in a flow. The objective is to vary the Strouhal number, based on the total excursion amplitude of the trailing edge of the profile, over a relatively small and narrow range, where several aquatic species evolve. This range is therefore interesting for the study of artificial propulsion systems. The propulsion capability was inferred by analyzing the structure of the induced flow in the wake, and by determining the actual force exerted by the profile on the flow. Due to the significant effects of the induced drag associated with marginal vortices and those of the viscous drag, inversely proportional to the aspect ratio, it appears that the propulsive performance of the three-dimensional profile is much lower than that of the two-dimensional profile. The influence of flapping parameters on propulsive performance has also been studied.

Page generated in 0.037 seconds