• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 675
  • 123
  • 72
  • 67
  • 67
  • 53
  • 45
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1484
  • 1484
  • 323
  • 323
  • 277
  • 237
  • 218
  • 161
  • 130
  • 128
  • 126
  • 115
  • 115
  • 110
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
771

Electrospun nanofiber meshes for the functional repair of bone defects

Kolambkar, Yash Manohar 16 November 2009 (has links)
Bone defects caused by trauma, tumor resection or disease present a significant clinical problem. Failures in 'high risk' fractures and large bone defects have been reported to be as high as 30-50%. The drawbacks associated with current bone grafting procedures have stimulated the search for improved techniques for bone repair. Tissue engineering/regenerative medicine approaches promote tissue repair by providing a combination of physical and biological cues through structural scaffolds and bioactive agents. Though they have demonstrated significant promise for bone regeneration, very little has been translated to clinical practice. The goal of this thesis was to investigate the potential of electrospun nanofiber mesh scaffolds for bone regeneration. Nanofiber meshes were utilized in a three-pronged approach. First, we validated their ability to robustly support osteogenic cell functions, including proliferation and matrix mineralization. We also demonstrated their efficacy as a cell delivery vehicle. Second, we investigated the effects of modulating nanofiber bioactivity and orientation on stem cell programming. Our results indicate that functionalization of nanofiber meshes with a collagen-mimetic peptide enhanced the migration, proliferation and osteogenic differentiation of cells. Fiber alignment improved cell migration along the direction of fiber orientation. Finally, a nanofiber mesh based hybrid system for growth factor delivery was developed for bone repair and tested in a challenging animal model. The delivery of bone morphogenetic protein (BMP) via this system resulted in the functional restoration of limb function, and in fact proved more efficacious than the current clinical standard for BMP delivery. The studies performed in this thesis have suggested novel techniques for improving the repair of clinically challenging bone defects. They indicate that the delivery of BMP via the hybrid system may reduce the dose and side effects of BMP, thereby broadening the use of BMP based bone augmentation procedures. Therefore, this nanofiber mesh based system has the potential to become the standard of care for clinically challenging bone defects, including large bone defects, open tibial fractures, and nonunions.
772

Cryopreservation effects on the in vitro and in vivo function of a model pancreatic substitute

Lawson, Alison N. 29 March 2011 (has links)
The effects of two types of cryopreservation, conventional freezing and vitrification, on the in vitro and in vivo function of a pancreatic substitute were investigated. Conventional freezing uses low concentrations of cryoprotective agents (CPAs), slow cooling and rapid warming and allows ice formation. Vitrification requires high concentrations of CPAs coupled with rapid cooling and warming to achieve a vitreous, or ice-free, state. A previously published mathematical model describing the mass transfer of CPAs through the alginate matrix of the substitute and the cell membrane was expanded to incorporate heat transfer as well as CPA cytotoxicity. Our results indicate that temperature of exposure is the most critical parameter for the proper design of CPA addition and removal protocols. The use of a mathematical model is critical to ensure CPA equilibration and minimize CPA exposure. Properly designed CPA addition and removal protocols were used for vitrification. The effects of cryopreservation on the biomaterial and the cellular function of a pancreatic substitute consisting of murine insulinomas encapsulated in calcium alginate/poly-L-lysine/alginate beads were assessed. In vitro results indicate that both vitrification and conventionally frozen perform comparably to fresh. However, in vivo studies reveal that vitrified beads perform worse than both conventionally frozen and fresh beads. With adjustments, it may be possible to improve the performance of the vitrified beads. Nevertheless, for this pancreatic substitute, conventional freezing is the better method and allows successful cryopreservation.
773

The use of perfluorocarbons in encapsulated cell systems: their effect on cell viability and function and their use in noninvasively monitoring the cellular microenvironment

Goh, Fernie 01 April 2011 (has links)
Implantation of tissue engineered pancreatic constructs can provide for a physiologic regulation of blood glucose levels. A major concern in designing such constructs is ensuring sufficient oxygenation of the cells, as oxygen is usually the limiting nutrient affecting cell viability and function. Furthermore, in vivo factors influencing construct oxygenation often lead to implant failure, and are detected primarily on end physiologic effects. The ability of perfluorocarbons (PFCs) to dissolve large amounts of oxygen and their high fluorine content makes these compounds a potentially valuable oxygen delivery tool and good 19F Nuclear Magnetic Resonance (NMR) markers for dissolved oxygen concentration (DO). Experimental studies and simulations showed that although the addition of 10 vol% PFC increased construct oxygenation, this improvement was minimal and had limited benefits on the growth and function of encapsulated bTC-tet cells under normoxic and hypoxic conditions. A dual PFC method that utilizes 19F NMR spectroscopy was developed to noninvasively monitor DO within a tissue construct and in its surroundings. In vitro studies using an NMR-compatible bioreactor demonstrated the feasibility of this method to monitor the DO within alginate beads containing metabolically active bTC-tet cells, relative to the DO in the culture medium, under perfusion and static conditions. In vivo, the method was capable of acquiring real-time DO measurements in murine models. Measured DO can be correlated with the physiological state of the implant examined post-explantation and was compatible with the therapeutic function of the implant.
774

Human stem cell delivery and programming for functional regeneration of large segmental bone defects

Dupont, Kenneth Michael 19 January 2010 (has links)
Large bone defects pose a significant clinical challenge currently lacking an adequate therapeutic solution. Bone tissue engineering (BTE) therapies aim to provide that solution by combining structural scaffolds, bioactive factors, and/or osteogenic cells. Cellular therapies are likely vital to repair severe defects in patients lacking sufficient endogenous cells. Stem cells are attractive cell choices due to their osteogenic differentiation and extensive proliferation abilities, but their therapeutic potential is still uncertain, as studies comparing stem cell sources and delivery methods have produced inconsistent results. In this thesis, we developed a challenging in vivo large bone defect model for quantitative comparison of human stem cell-based therapies and then evaluated the abilities of adult or fetal stem cell-seeded constructs to enhance defect repair, with or without added osteogenic cues. First, we showed that cellular construct treatment enhanced defect healing over acellular construct treatment, although there were no differences between adult or fetal cell sources. We next labeled stem cells with a fluorescent tracking agent, the quantum dot, to determine biodistribution of implanted cells during the repair process. While quantum dots effectively labeled cells in vitro, they were ineffective in vivo tracking agents due to false positive signals and detrimental effects on stem cell-mediated repair. Finally, we developed a novel gene therapy technique using virus-coated scaffolds to deliver the osteogenic factor bone morphogenetic protein 2 (BMP2) to defect sites, either by in vitro (BMP2 transduction of seeded stem cells pre-implantation) or in vivo (BMP2 transduction of defect-site host cells) means. While defect-site BMP2 delivery through gene therapy methods improved repair, in vivo therapy enhanced healing more than stem cell-based in vitro therapy. This finding does not rule out the potential of stem cell-based in vitro gene therapy treatment for functional bone repair, as increases in viral dose may improve stem cell-mediated healing, but it does present evidence of a novel acellular BTE therapy with potential off-the-shelf clinical application in large bone defect repair, as scaffolds could be virally coated with the gene for BMP2 expression and frozen until implantation.
775

MEMS-based nozzles and templates for the fabrication of engineered tissue constructs

Naik, Nisarga 15 November 2010 (has links)
This dissertation presents the application of MEMS-based approaches for the construction of engineered tissue substitutes. MEMS technology can offer the physical scale, resolution, and organization necessary for mimicking native tissue architecture. Micromachined nozzles and templates were explored for the fabrication of acellular, biomimetic collagenous fibrous scaffolds, microvascular tissue structures, and the combination of these structures with cell-based therapeutics. The influence of the microstructure of the tissue constructs on their macro-scale characteristics was investigated.
776

Human Tissue Engineered Small Diameter Blood Vessels

Arief, Melissa Suen 24 September 2010 (has links)
The engineering of human vascular grafts is an intense area of study since there is crucial need for alternatives to native vein or artery for vascular surgery. This current study sought to prove that a tissue engineered blood vessel (TEBV) 1mm in diameter could be developed from human smooth muscle cells and that endothelial progenitor cells (EPCs) could be cultured and used to endothelialize these grafts. This project had four specific aims: the isolation and characterization of EPCs, the seeding of a novel scaffold with EPCs and exposure to physiologic shear stress in vitro, the development of TEBV from human smooth muscle cells that are strong enough to implant in vivo, and the in vivo implantation of TEBV into the rat aortic model with a comparison of EPC seeded TEBVs pretreated with shear stress and unseeded TEBVs. The results yielded isolation of four EPC lines and a flow system design capable of seeding EPCs onto a novel scaffold with preliminary studies indicating that it is capable of exposing the EPCs to physiologic shear stress, although further studies require more optimization. The development of mechanically strong TEBV was highly successful, yielding TEBVs comparable to native vessels in collagen density and burst pressure, but with much lower compliance. Current implantation studies indicated that unseeded TEBV grafts implanted into the rat aorta without anticoagulation is highly thrombogenic. However, anticoagulation using Plavix may be capable of maintaining graft patency. These TEBVs did not rupture or form aneurysm in vivo and the future completion of the in vivo studies are likely to demonstrate the high potential of these grafts.
777

Fabrication of PHBV and PHBV-based composite tissue engineering scaffolds through the emulsion freezing/freeze-drying process and evaluation of the scaffolds

Sultana, Naznin. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (p. 253-274). Also available in print.
778

Biophysical and biochemical control of three-dimensional embryonic stem cell differentiation and morphogenesis

Kinney, Melissa 08 June 2015 (has links)
Stem cell differentiation is regulated by the complex interplay of multiple parameters, including adhesive intercellular interactions, cytoskeletal and extracellular matrix remodeling, and gradients of agonists and antagonists that individually and collectively vary as a function of spatial locale and temporal stages of development. Directed differentiation approaches have traditionally focused on the delivery of soluble morphogens and/or the manipulation of culture substrates in two-dimensional, monolayer cultures, with the objective of achieving large yields of homogeneously differentiated cells. However, a more complete understanding of stem cell niche complexity motivates tissue engineering approaches to inform the development of physiologically relevant, biomimetic models of stem cell differentiation. The capacity of pluripotent stem cells to simultaneously differentiate toward multiple tissue-specific cell lineages has prompted the development of new strategies to guide complex, three-dimensional morphogenesis of functional tissue structures. The objective of this project was to characterize the spatiotemporal dynamics of stem cell biophysical characteristics and morphogenesis, to inform the development of ESC culture technologies to present defined and tunable cues within the three-dimensional spheroid microenvironment. The hypothesis was that the biophysical and biochemical cues present within the 3D microenvironment are altered in conjunction with morphogenesis as a function of stem cell differentiation stage. Understanding biochemical and physical tissue morphogenesis, including the relationships between remodeling of cytoskeletal elements and intercellular adhesions, associated developmentally relevant signaling pathways, and the physical properties of the EB structure together elucidate fundamental cellular interactions governing embryonic morphogenesis and cell specification. Together, this project has established a foundation for controlling, characterizing, and systematically perturbing aspects of stem cell microenvironments in order to guide the development of complex, functional tissue structures for regenerative therapies.
779

3D bioprinted hydrogel scaffolds laden with Schwann cells for use as nerve repair conduits

2015 June 1900 (has links)
The goal of nerve tissue engineering is to promote and guide axon growth across a site of nerve injury without misdirection. Bioengineered tissue scaffolds have been shown to be promising for the regeneration of damaged peripheral nerves. Schwann cells play a pivotal role following nerve injury by forming aligned “bands of Büngner” that promote and guide axon regeneration into the distal nerve segment. The incorporation of living Schwann cells into various hydrogels has therefore been urged during the fabrication of tissue engineered nerve scaffolds. The aim of this research is to characterize biomaterials suitable for 3D bioplotting of nerve repair scaffolds. Here a novel technique of scaffold fabrication has been optimized to print alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells. Alginate/hyaluronic acid scaffolds were successfully fabricated with good printability and cell viability. Addition of the polycation polyethyleneimine (PEI) during the fabrication process stabilized the structure of alginate through the formation of a polyelectrolyte complex and had a significant influence on the degree of swelling, degradation rate, mechanical property, and release kinetics of incorporated protein within the scaffolds. A preliminary in vivo study showed the feasibility of implanting 3D printed alginate/hyaluronic acid scaffolds as nerve conduits in Sprague-Dawley (SD) rats with resected sciatic nerves. However alginate/hyaluronic acid scaffolds were found to be unsuitable for axonal regeneration. Further in vitro culture of Schwann cells was performed in collagen type-I, fibrin, fibrin/hyaluronic acid, and their combination with alginate. It was found that Schwann cells had more favorable cell morphology in fibrin/hyaluronic acid or collagen without alginate. Schwann cell proliferation and alignment were better in fibrin/hyaluronic acid. Therefore fibrin/hyaluronic acid is more ideal than most other hydrogel formulations for use in the bioprinting of nerve repair tissue engineering scaffolds, which incorporate cellular elements. As Schwann cells also align along the long axis of the printed fibrin/hyaluronic acid strands, 3D bioprinting of multiple layers of crosslinked fibrin strands can be used to fabricate a nerve conduit mimicking the bands of Büngner.
780

Regulation of Cell Adhesion Strength by Spatial Organization of Focal Adhesions

Elineni, Kranthi Kumar 01 January 2011 (has links)
Cell adhesion to extracellular matrix (ECM) is critical to various cellular processes like cell spreading, migration, growth and apoptosis. At the tissue level, cell adhesion is important in the pathological and physiological processes that regulate the tissue morphogenesis. Cell adhesion to the ECM is primarily mediated by the integrin family of receptors. The receptors that are recruited to the surface are reinforced by structural and signaling proteins at the adhesive sites forming focal adhesions that connect the cytoskeleton to further stabilize the adhesions. The functional roles of these focal adhesions extend beyond stabilizing adhesions and transduce mechanical signals at the cell-ECM interface in various signaling events. The objective of this research is to analyze the role of the spatial distribution of the focal adhesions in stabilizing the cell adhesion to the ECM in relation to cell's internal force balance. The central hypothesis was that peripheral focal adhesions stabilize cell adhesion to ECM by providing for maximum mechanical advantage for resisting detachment as explained by the membrane peeling mechanism. Micropatterning techniques combined with robust hydrodynamic shear assay were employed to test our hypothesis. However, technical difficulties in microcontact printing stamps with small and sparse features made it challenging to analyze the role of peripheral focal adhesions in stabilizing cell adhesion. To overcome this limitation, the roof collapse phenomenon in stamps with small and sparse features (low fill factor stamps) that was detrimental to the reproduction of the adhesive geometries required to test the hypothesis was analyzed. This analysis lead to the valuable insight that the non-uniform pressure distribution during initial contact caused by parallelism error during manual microcontact printing prevented accurate replication of features on the substrate. To this end, the template of the stamp was modified so that it included an annular column around the pattern zone that acted as a collapse barrier and prevented roof collapse propagation into the pattern zone. Employing this modified stamp, the required geometries for the cell adhesion analysis were successfully reproduced on the substrates with high throughput. Adhesive areas were engineered with circular and annular patterns to discern the contribution of peripheral focal adhesions towards cell adhesion strength. The patterns were engineered such that two distinct geometries with either constant adhesive area or constant spreading area were obtained. The significance of annular patterns is that for the same total adhesive area as the circular pattern, the annular pattern provided for greater cell spreading thereby increasing the distance of the focal adhesions from the cell's center. The adhesion strength analysis was accomplished by utilizing hydrodynamic shear flow in a spinning disk device that was previously developed. The results indicate that for a constant total adhesive area, the annular patterns provide for greater adhesion strength by enhancing cell spreading area and providing for greater moment arm in resisting detachment due to shear. The next examination was the effect of the cell's internal force balance in stabilizing the cell adhesion. The working hypothesis was that microtubules provide the necessary forces to resist the tensile forces expressed by the cell contractile machinery, thereby stabilizing cell adhesion. Since microtubule disruption is known to enhance cell contractility, its effect on the cell adhesion strength was examined. Moreover, the force balance in cells was altered by engineering adhesive areas so that the cells were either spherical or completely spread and then disrupted microtubules to understand the significance of the force balance in modulating the cell adhesion strength. The results indicated that disruption of microtubules in cells on adhesive islands resulted in a 10 fold decrease in adhesion strength compared to untreated controls whereas no significant change was observed in completely spread cells between treated and untreated controls. This is in surprising contrast to the previous contractility inhibition studies which indicate a less pronounced regulation of adhesion strength for both micropatterned and spread cells. Taken together, these findings suggest that the internal force balance regulated by cell shape strongly modulates the adhesion strength though the microtubule network. In summary, this project elucidates the role of peripheral focal adhesions in regulating the cell adhesion strength. Furthermore, this study also establishes the importance of the internal force balance towards stabilizing the cell adhesion to the ECM through the microtubule network.

Page generated in 0.0767 seconds