• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 16
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Topology control for mobile ad hoc networks

Zhao, Liang. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: Errol L. Lloyd, Dept. of Computer & Info Sciences. Includes bibliographical references.
12

Transformations for proof-graphs with cycle treatment augmented via geometric perspective techniques

Vaz Alves, Gleifer 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T15:49:50Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho é baseada em dois aspectos fundamentais: (i) o estudo de procedimentos de normalização para sistemas de provas, especialmente para a lógica clássica com dedução natural; e (ii) a investigação de técnicas da perspectiva geométrica aplicadas em propriedades da teoria da prova. Com isso, a motivação específica deste trabalho reside principalmente na análise daqueles trabalhos que estão voltados à definição de técnicas da normalização através de mecanismos da perspectiva geométrica. Destaca-se que técnicas da perspectiva geométrica trazem o uso de arcabouços gráficos e/ou topológicos com a finalidade de representar sistemas formais de provas e suas propriedades. Dessa forma, a primeira parte do documento apresenta o uso de técnicas e arcabouços topológicos para estabelecer algumas propriedades, como, por exemplo, o critério de corretude e a normalização de sistemas de prova. Ao passo que a segunda parte do documento é inicialmente direcionada à descrição de algumas abordagens de normalização (principalmente) para a lógica clássica com dedução natural. E o complemento da segunda parte é dedicado à definição do principal objetivo do trabalho, i.e., desenvolver um procedimento de normalização para o conjunto completo de operadores dos N-Grafos, através do auxílio de algumas técnicas de perspectiva geométrica. (Destaca-se que as técnicas de perspectiva geométrica, aplicadas à normalização dos N-Grafos, não fazem uso de arcabouços topológicos). N-Grafos é um sistema de prova com múltipla conclusão definido para lógica clássica proposicional com dedução natural. Ademais, os N-Grafos possuem tanto regras lógicas como estruturais, estruturas cíclicas são permitidas e além disso as derivações são representadas como grafos direcionados. De fato, a princpal característica do procedimento de normalização aqui apresentado é fornecer um tratamento completo para as estruturas cíclicas. Ou seja, são definidas classes de ciclos válidos, critério de corretude, propriedades e ainda um algoritmo específico para normalizar os ciclos nos N-Grafos. Destaca-se que esses elementos são construídos através do auxílio de arcabouços gráficos. Além disso, o mecanismo de normalização é capaz de lidar com os diferentes papéis executados pelos operadores ?/>. Adicionalmente, apresenta-se uma prova direta da normalização fraca para os N-Grafos, bem como, a determinação das propriedades da subfórmula e da separação
13

A colimit construction for groupoids

Albandik, Suliman 10 August 2015 (has links)
No description available.
14

Optimal and Hereditarily Optimal Realizations of Metric Spaces / Optimala och ärftligt optimala realiseringar av metriker

Lesser, Alice January 2007 (has links)
<p>This PhD thesis, consisting of an introduction, four papers, and some supplementary results, studies the problem of finding an <i>optimal realization</i> of a given finite metric space: a weighted graph which preserves the metric's distances and has minimal total edge weight. This problem is known to be NP-hard, and solutions are not necessarily unique.</p><p>It has been conjectured that <i>extremally weighted</i> optimal realizations may be found as subgraphs of the <i>hereditarily optimal realization</i> Γ<sub>d</sub>, a graph which in general has a higher total edge weight than the optimal realization but has the advantages of being unique, and possible to construct explicitly via the <i>tight span</i> of the metric.</p><p>In Paper I, we prove that the graph Γ<sub>d</sub> is equivalent to the 1-skeleton of the tight span precisely when the metric considered is <i>totally split-decomposable</i>. For the subset of totally split-decomposable metrics known as <i>consistent</i> metrics this implies that Γ<sub>d</sub> is isomorphic to the easily constructed <i>Buneman graph</i>.</p><p>In Paper II, we show that for any metric on at most five points, any optimal realization can be found as a subgraph of Γ<sub>d</sub>.</p><p>In Paper III we provide a series of counterexamples; metrics for which there exist extremally weighted optimal realizations which are not subgraphs of Γ<sub>d</sub>. However, for these examples there also exists at least one optimal realization which is a subgraph.</p><p>Finally, Paper IV examines a weakened conjecture suggested by the above counterexamples: can we always find some optimal realization as a subgraph in Γ<sub>d</sub>? Defining <i>extremal</i> optimal realizations as those having the maximum possible number of shortest paths, we prove that any embedding of the vertices of an extremal optimal realization into Γ<sub>d</sub> is injective. Moreover, we prove that this weakened conjecture holds for the subset of consistent metrics which have a 2-dimensional tight span</p>
15

Optimal and Hereditarily Optimal Realizations of Metric Spaces / Optimala och ärftligt optimala realiseringar av metriker

Lesser, Alice January 2007 (has links)
This PhD thesis, consisting of an introduction, four papers, and some supplementary results, studies the problem of finding an optimal realization of a given finite metric space: a weighted graph which preserves the metric's distances and has minimal total edge weight. This problem is known to be NP-hard, and solutions are not necessarily unique. It has been conjectured that extremally weighted optimal realizations may be found as subgraphs of the hereditarily optimal realization Γd, a graph which in general has a higher total edge weight than the optimal realization but has the advantages of being unique, and possible to construct explicitly via the tight span of the metric. In Paper I, we prove that the graph Γd is equivalent to the 1-skeleton of the tight span precisely when the metric considered is totally split-decomposable. For the subset of totally split-decomposable metrics known as consistent metrics this implies that Γd is isomorphic to the easily constructed Buneman graph. In Paper II, we show that for any metric on at most five points, any optimal realization can be found as a subgraph of Γd. In Paper III we provide a series of counterexamples; metrics for which there exist extremally weighted optimal realizations which are not subgraphs of Γd. However, for these examples there also exists at least one optimal realization which is a subgraph. Finally, Paper IV examines a weakened conjecture suggested by the above counterexamples: can we always find some optimal realization as a subgraph in Γd? Defining extremal optimal realizations as those having the maximum possible number of shortest paths, we prove that any embedding of the vertices of an extremal optimal realization into Γd is injective. Moreover, we prove that this weakened conjecture holds for the subset of consistent metrics which have a 2-dimensional tight span
16

Surface Topological Analysis for Image Synthesis

Zhang, Eugene 09 July 2004 (has links)
Topology-related issues are becoming increasingly important in Computer Graphics. This research examines the use of topological analysis for solving two important problems in 3D Graphics: surface parameterization, and vector field design on surfaces. Many applications, such as high-quality and interactive image synthesis, benefit from the solutions to these problems. Surface parameterization refers to segmenting a 3D surface into a number of patches and unfolding them onto a plane. A surface parameterization allows surface properties to be sampled and stored in a texture map for high-quality and interactive display. One of the most important quality measurements for surface parameterization is stretch, which causes an uneven sampling rate across the surface and needs to be avoided whenever possible. In this thesis, I present an automatic parameterization technique that segments the surface according to the handles and large protrusions in the surface. This results in a small number of large patches that can be unfolded with relatively little stretch. To locate the handles and large protrusions, I make use of topological analysis of a distance-based function on the surface. Vector field design refers to creating continuous vector fields on 3D surfaces with control over vector field topology, such as the number and location of the singularities. Many graphics applications make use of an input vector field. The singularities in the input vector field often cause visual artifacts for these applications, such as texture synthesis and non-photorealistic rendering. In this thesis, I describe a vector field design system for both planar domains and 3D mesh surfaces. The system provides topological editing operations that allow the user to control the number and location of the singularities in the vector field. For the system to work for 3D meshes surface, I present a novel piecewise interpolating scheme that produces a continuous vector field based on the vector values defined at the vertices of the mesh. I demonstrate the effectiveness of the system through several graphics applications: painterly rendering of still images, pencil-sketches of surfaces, and texture synthesis.
17

A compactness theorem for Hamilton circles in infinite graphs

Funk, Daryl J. 28 April 2009 (has links)
The problem of defining cycles in infinite graphs has received much attention in the literature. Diestel and Kuhn have proposed viewing a graph as 1-complex, and defining a topology on the point set of the graph together with its ends. In this setting, a circle in the graph is a homeomorph of the unit circle S^1 in this topological space. For locally finite graphs this setting appears to be natural, as many classical theorems on cycles in finite graphs extend to the infinite setting. A Hamilton circle in a graph is a circle containing all the vertices of the graph. We exhibit a necessary and sufficient condition that a countable graph contain a Hamilton circle in terms of the existence of Hamilton cycles in an increasing sequence of finite graphs. As corollaries, we obtain extensions to locally finite graphs of Zhan's theorem that all 7-connected line graphs are hamiltonian (confirming a conjecture of Georgakopoulos), and Ryjacek's theorem that all 7-connected claw-free graphs are hamiltonian. A third corollary of our main result is Georgakopoulos' theorem that the square of every two-connected locally finite graph contains a Hamilton circle (an extension of Fleischner's theorem that the square of every two-connected finite graph is Hamiltonian).
18

Kombinatorické otázky v geometrii / Combinatorial problems in geometry

Kynčl, Jan January 2013 (has links)
No description available.
19

Conception d'une méthodologie appliquée aux modèles dynamiques multi-physiques à topologie dynamique / Design of a methodology applied to multi-physical dynamic models with dynamic topology

Abdeljabbar, Nourhene 13 February 2019 (has links)
La modélisation des systèmes mécatroniques nécessite le même type de méthodologie pour la conception et le prototypage de dispositifs mécatroniques. Une ingénierie unifiée et intégrée doit être déployée. Diverses approches sont actuellement proposées pour atteindre de la modélisation multi-physique comme la théorie des graphes, les approches équationnelles ou les techniques. Dans ce contexte, l’objectif de nos travaux de recherche est la conception d'une méthodologie appliquée aux modèles dynamiques multi-physiques à topologie dynamique. Pour une telle contribution, il est nécessaire de partir d’une approche existante. Cette approche porte sur la modélisation topologique puisqu’elle est basée sur les collections topologiques et les transformations. Cette approche topologique est utilisée pour modéliser les systèmes mécatroniques.Son point fort est la séparation de la topologie (loi d'interconnexion) et la loi de comportement (physique) qui permet la simplification de la modélisation de systèmes complexes que l'on peut décrire comme un ensemble d'interactions locales entre entités élémentaires. La thèse propose donc une nouvelle méthodologie nommée 4Mo(DS)2 qui se rapporte à la modélisation multi-niveaux, multi-domaines et multi-physiques basée sur des systèmes dynamiques qui ont des structures dynamiques. Cette méthodologie permet la modélisation topologique des modèles dynamiques multi-physiques à topologie dynamique pendant la phase de conception tout en prenant en compte les modifications topologiques, le contrôle et commande ainsi que l’intégration de la dimension deux dans leur structure topologique. / Mechatronic systems modelling requires the same type of methodology for the design and prototyping of mechatronic devices. Unified and integrated engineering must be deployed. Various approaches are currently proposed to achieve multi-physics modeling such as graph theory, equational approaches or techniques. In this context, the objective of our research work is the design of a methodology applied to dynamic multi-physical models with dynamic topology. For such a contribution, it is necessary to start from an existing approach. This approach focuses on topological modelling since it is based on topological collections and transformations. This topological approach is used to model mechatronic systems.Its strong point is the separation of topology (interconnection law) and behavior law (physical) which allows the simplification of the modeling of complex systems that can be described as a set of local interactions between elementary entities. The thesis therefore proposes a new methodology named 4Mo(DS)2 which relates to multilevel, multi-physical and multi-domain modeling based on dynamic systems that have dynamic structures. This methodology allows the topological modeling of dynamic multi-physical dynamic topology models during the design phase while taking into account topological modifications, control and command as well as the integration of dimension two into their topological structure.

Page generated in 0.0972 seconds