• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of digital topology for real-time markerless motion capture / Applications de la topologie discrète pour la captation de mouvement temps réel et sans marqueurs

Raynal, Benjamin 07 December 2010 (has links)
Durant cette thèse, nous nous sommes intéressés à la problématique de la captation de mouvement sans marqueurs. Une approche classique est basée sur l'utilisation d'un modèle prédéfini du sujet, et est divisée en deux phases : celle d'initialisation, où la pose initiale du sujet est estimée, et celle de suivi, où la pose actuelle du sujet est estimée à partir des précédentes. Souvent, la phase d'initialisation est faite manuellement, rendant impossible l'utilisation en direct, ou nécessite des actions spécifiques du sujet. Nous proposons une phase d'initialisation automatique et temps-réel, utilisant l'information topologique extraite par squelettisation d'une reconstruction 3D du sujet. Cette information est représentée sous forme d'arbre (arbre de données), qui est mis en correspondance avec un arbre utilisé comme modèle, afin d'identifier les différentes parties du sujet. Pour obtenir une telle méthode, nous apportons des contributions dans les domaines de la topologie discrète et de la théorie des graphes. Comme notre méthode requiert le temps réel, nous nous intéressons d'abord à l'optimisation du temps de calcul des méthodes de squelettisation, ainsi qu'à l'élaboration de nouveaux algorithmes rapides fournissant de bons résultats. Nous nous intéressons ensuite à la définition d'une mise en correspondance efficace entre l'arbre de données et celui décrivant le modèle. Enfin, nous améliorons la robustesse de notre méthode en ajoutant des contraintes novatrices au modèle. Nous terminons par l'application de notre méthode sur différents jeux de données, démontrantses propriétés : rapidité robustesse et adaptabilité à différents types de sujet / This manuscript deals with the problem of markerless motion capture. An approach to thisproblem is model-based and is divided into two steps : an initialization step in which the initialpose is estimated, and a tracking which computes the current pose of the subject using infor-mation of previous ones. Classically, the initialization step is done manually, for bidding the possibility to be used online, or requires constraining actions of the subject. We propose an automatic real-time markerless initialization step, that relies on topological information provided by skeletonization of a 3D reconstruction of the subject. This topological information is then represented as a tree, which is matched with another tree used as modeldescription, in order to identify the different parts of the subject. In order to provide such a method, we propose some contributions in both digital topology and graph theory researchfields. As our method requires real-time computation, we first focus on the speed optimization of skeletonization methods, and on the design of new fast skeletonization schemes providing good results. In order to efficiently match the tree representing the topological information with the tree describing the model, we propose new matching definitions and associated algorithms. Finally, we study how to improve the robustness of our method by the use of innovative con-straints in the model. This manuscript ends by a study of the application of our method on several data sets, demon-strating its interesting properties : fast computation, robustness, and adaptability to any kindof subjects
2

Automated characterization of skin aging using in vivo confocal microscopy / Caractérisation automatique du vieillissement de la peau par microscopie confocale in-vivo

Robic, Julie 20 June 2018 (has links)
La microscopie confocale de réflectance in-vivo (RCM) est un outil puissant pour visualiser les couches cutanées à une résolution cellulaire. Des descripteurs du vieillissement cutané ont été mis en évidence à partir d'images confocales. Cependant, leur évaluation nécessite une analyse visuelle des images par des dermatologues expérimentés. L'objectif de cette thèse est le développement d'une technologie innovante pour quantifier automatiquement le phénomène du vieillissement cutané en utilisant la microscopie confocale de réflectance in vivo. Premièrement, la quantification de l’état de l’épiderme est abordée. Ensuite, la jonction dermique-épidermique est segmentée, et sa forme est caractérisée. Les mesures proposées mettent en évidence une différence significative entre les groupes d'âge et l’exposition au soleil. Enfin, les méthodes proposées sont validées par des études cliniques et d'efficacité de produits cosmétiques / In-vivo reflectance confocal microscopy (RCM) is a powerful tool to visualize the skin layers at cellular resolution. Aging descriptors have been highlighted from confocal images. However, it requires visual assessment of images by experienced dermatologists to assess those descriptors. The objective of this thesis is the development of an innovative technology to automatically quantify the phenomenon of skin aging using in vivo reflectance confocal microscopy. First, the quantification of the epidermal state is addressed. Then, the Dermal-Epidermal Junction is segmented, and its shape is characterized. The proposed measurements show significant difference among groups of age and photo-exposition. Finally, the proposed methods are validated through both clinical and cosmetic product efficacy studies
3

Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète

Lachaud, Jacques-Olivier 06 December 2006 (has links) (PDF)
Les travaux présentés dans ce mémoire d'habilitation correspondent à des recherches effectuées depuis mon arrivée à Bordeaux en septembre 1999. J'ai choisi d'y présenter celles qui ont trait aux approches non-euclidiennes pour l'analyse d'image, la clé de voûte en étant la segmentation par modèle déformable. D'autres travaux plus amonts comme la topologie des espaces subdivisés et les invariants topologiques ou plus avals comme la reconstruction de colonne vertébrale en imagerie radiographique ne seront qu'évoqués. Ce choix, s'il peut sembler restrictif par rapport à une synthèse exhaustive de mes travaux, présente néanmoins une plus grande cohérence, à la fois dans les résultats et dans la démarche suivie. Ce mémoire montre notamment que l'utilisation d'autres géométries que la géométrie euclidienne classique, les géométries riemannienne et discrète, présente un intérêt certain en analyse d'images. Les modèles déformables constituent une technique classique de segmentation et de reconstruction en analyse d'image. Dans ce cadre, le problème de la segmentation est exprimé sous forme variationnelle, où la solution est idéalement le minimum d'une fonctionnelle. Pendant ma thèse, je m'étais déjà intéressé aux modèles hautement déformables, qui ont la double caractéristique de se baser uniquement sur l'information image pour repérer ses composantes et de pouvoir extraire des formes de complexité arbitraire. Pour assurer l'initialisation du modèle déformable, j'avais aussi mis en évidence les liens entre surfaces discrètes et triangulations d'isosurfaces. Ces premiers travaux expliquent le cheminement que j'ai suivi depuis dans mes recherches. En voulant attaquer deux problématiques fondamentales des modèles déformables (la minimisation du nombre de paramètres et de la complexité, la recherche d'une solution plus proche de l'optimale), j'ai été amené à changer l'espace de travail classique : l'espace euclidien. Le Chapitre 1 résume les approches classiques des modèles déformables, leurs différentes formulations, ainsi que les problématiques spécifiques auxquelles je me suis intéressé. Il montre enfin en quoi la formulation des modèles déformables dans des espaces non-euclidiens ouvre des pistes intéressantes pour les résoudre. La première voie explorée et résumée dans le Chapitre 2 est d'introduire une métrique riemannienne, variable dans l'espace et dépendante de l'information image locale. L'utilisation d'une autre métrique permet de déformer virtuellement l'espace afin de concentrer l'effort de calcul sur les zones d'intérêt de l'image. Une métrique judicieusement choisie permet d'adapter le nombre de paramètres du modèle déformable à la géométrie de la forme recherchée. Le modèle pourra ainsi se déplacer très vite sur les zones homogènes, extraire les parties droites, planes ou peu courbées avec très peu de paramètres, et conserver une grande précision sur les contours significatifs très courbés. Une telle approche conserve voire améliore la qualité et la robustesse de la segmentation, et minimise à la fois la complexité en temps et le nombre d'itérations avant convergence. La deuxième voie explorée parallèlement est le remplacement de l'espace euclidien continu par la grille cellulaire discrète. L'espace des formes possibles est alors fini tout en restant adapté à l'échantillonnage de l'image. D'autres techniques d'optimisation sont dès lors envisageables, la solution est bien définie et les problèmes numériques liés à la convergence d'un processus ne sont plus présents. Le Chapitre 3 décrit le principe suivi pour discrétiser le modèle déformable sur la grille cellulaire Z^n. Il présente les premiers résultats obtenus avec un algorithme de segmentation a posteriori. Il met aussi en évidence les problématiques soulevées par le passage au discret, problématiques qui se sont révélées être des voies de recherche par elles-mêmes. D'une part, il faut mettre au point des structures de données et des outils pour représenter les surfaces discrètes, pour mesurer leurs paramètres géométriques, et pour les faire évoluer. Le Chapitre 4 synthétise les travaux menés en ce sens. Cela nous conduit à proposer un nouveau formalisme algébrique pour représenter ces surfaces en dimension quelconque. Une étude précise des estimateurs géométriques discrets de tangente, de normale, de longueur et de courbure est ensuite conduite. Nous avons notamment évalué quantitativement leurs performances à basse échelle et proposé de nouveaux estimateurs pour les améliorer. Leurs propriétés asymptotiques lorsque la discrétisation est de plus en plus fine sont enfin discutées. D'autre part, le modèle déformable discret doit approcher au mieux le comportement du modèle déformable euclidien à résolution donnée mais aussi simuler de plus en plus exactement ce comportement lorsque la résolution augmente asymptotiquement. Les estimateurs géométriques discrets se doivent dès lors d'être convergents. En analysant finement la décomposition des courbes discrètes en segments discrets maximaux, nous avons obtenu des théorèmes de convergence ou de non-convergence de certains estimateurs. Le Chapitre 5 résume cette étude de la géométrie des courbes discrètes 2D et des propriétés géométriques asymptotiques du bord d'une discrétisation. Le mémoire se conclut par une synthèse des principaux résultats obtenus et montre les perspectives de recherche ouvertes par ces travaux.
4

Une étude du bien-composé en dimension n. / A Study of Well-composedness in n-D.

Boutry, Nicolas 14 December 2016 (has links)
Le processus de discrétisation faisant inévitablement appel à des capteurs, et ceux-ci étant limités de par leur nature, de nombreux effets secondaires apparaissent alors lors de ce processus; en particulier, nous perdons la propriété d'être "bien-composé" dans le sens où deux objects discrétisés peuvent être connectés ou non en fonction de la connexité utilisée dans l'image discrète, ce qui peut amener à des ambigüités. De plus, les images discrétisées sont des tableaux de valeurs numériques, et donc ne possèdent pas de topologie par nature, contrairement à notre modélisation usuelle du monde en mathématiques et en physique. Perdre toutes ces propriétés rend difficile l'élaboration d'algorithmes topologiquement corrects en traitement d'images: par exemple, le calcul de l'arbre des formes nécessite que la representation d'une image donnée soit continue et bien-composée; dans le cas contraire, nous risquons d'obtenir des anomalies dans le résultat final. Quelques representations continues et bien-composées existent déjà, mais elles ne sont pas simultanément n-dimensionnelles et auto-duales. La n-dimensionalité est cruciale sachant que les signaux usuels sont de plus en plus tridimensionnels (comme les vidéos 2D) ou 4-dimensionnels (comme les CT-scans). L'auto-dualité est nécéssaire lorsqu'une même image contient des objets a contrastes divers. Nous avons donc développé une nouvelle façon de rendre les images bien-composées par interpolation de façon auto-duale et en n-D; suivie d'une immersion par l'opérateur span, cette interpolation devient une représentation auto-duale continue et bien-composée du signal initial n-D. Cette représentation bénéficie de plusieurs fortes propriétés topologiques: elle vérifie le théorème de la valeur intermédiaire, les contours de chaque coupe de la représentation sont déterminés par une union disjointe de surfaces discrète, et ainsi de suite / Digitization of the real world using real sensors has many drawbacks; in particular, we loose ``well-composedness'' in the sense that two digitized objects can be connected or not depending on the connectivity we choose in the digital image, leading then to ambiguities. Furthermore, digitized images are arrays of numerical values, and then do not own any topology by nature, contrary to our usual modeling of the real world in mathematics and in physics. Loosing all these properties makes difficult the development of algorithms which are ``topologically correct'' in image processing: e.g., the computation of the tree of shapes needs the representation of a given image to be continuous and well-composed; in the contrary case, we can obtain abnormalities in the final result. Some well-composed continuous representations already exist, but they are not in the same time n-dimensional and self-dual. n-dimensionality is crucial since usual signals are more and more 3-dimensional (like 2D videos) or 4-dimensional (like 4D Computerized Tomography-scans), and self-duality is necessary when a same image can contain different objects with different contrasts. We developed then a new way to make images well-composed by interpolation in a self-dual way and in n-D; followed with a span-based immersion, this interpolation becomes a self-dual continuous well-composed representation of the initial n-D signal. This representation benefits from many strong topological properties: it verifies the intermediate value theorem, the boundaries of any threshold set of the representation are disjoint union of discrete surfaces, and so on
5

Discrete topology and geometry algorithms for quantitative human airway trees analysis based on computed tomography images / Topologie discrète et algorithmes géométriques pour l’analyse quantitative de l’arbre bronchique humain, basée sur des images de tomodensitométrie

Postolski, Michal 18 December 2013 (has links)
La tomodensitométrie est une technique très utile qui permet de mener avec succès des analyses non-invasives dans plusieurs types d'applications, par exemple médicales ou industrielles. L'analyse manuelle des structures d'intérêt présentes dans une image peut prendre beaucoup de temps, être laborieuse et parfois même impossible à faire en raison de sa complexité. C'est pour cela que dans cette thèse, nous proposons et développons des algorithmes nécessaires à cette analyse, basés sur la géométrie discrète et la topologie. Ces algorithmes peuvent servir dans de nombreuses applications, et en particulier au niveau de l'analyse quantitative automatique de l'arbre bronchique humain, sur la base d'images de tomodensitométrie. La première partie introduit les notions fondamentales de la topologie et de la géométrie discrètes utiles dans cette thèse. Ensuite, nous présentons le principe de méthodes utilisées dans de nombreuses applications : les algorithmes de squelettisation, de calcul de l'axe médian, les algorithmes de fermeture de tunnels et les estimateurs de tangentes. La deuxième partie présente les nouvelles méthodes que nous proposons et qui permettent de résoudre des problèmes particuliers. Nous avons introduit deux méthodes nouvelles de filtrage d'axe médian. La première, que nous appelons "hierarchical scale medial axis", est inspirée du "scale axis transform", sans les inconvénients qui sont propres à la méthode originale. La deuxième est une méthode nommée "discrete adaptive medial axis", où le paramètre de filtrage est adapté dynamiquement aux dimensions locales de l'objet. Dans cette partie, nous introduisons également des estimateurs de tangente nouveaux et efficaces, agissant sur des courbes discrètes tridimensionnelles, et que nous appelons "3Dlambda maximal segment tangent direction". Enfin, nous avons montré que la géométrie discrète et les algorithmes topologiques pouvaient être utiles dans le problème de l'analyse quantitative de l'arbre bronchique humain à partir d'images tomodensitométriques. Dans une chaîne de traitements de structure classique par rapport à l'état de l'art, nous avons appliqué des méthodes de topologie et de géométrie discrète afin de résoudre des problèmes particuliers dans chaque étape du processus de l'analyse quantitative. Nous proposons une méthode robuste pour segmenter l'arbre bronchique à partir d'un ensemble de données tomographiques (CT). La méthode est basée sur un algorithme de fermeture de tunnels qui est utilisé comme outil pour réparer des images CT abîmées par les erreurs d'acquisition. Nous avons aussi proposé un algorithme qui sert à créer un modèle artificiel d'arbre bronchique. Ce modèle est utilisé pour la validation des algorithmes présentés dans cette thèse. Ensuite nous comparons la qualité des différents algorithmes en utilisant un ensemble de test constitué de fantômes (informatiques) et d'un ensemble de données CT réelles. Nous montrons que les méthodes récemment présentées dans le cadre des complexes cubiques, combinées avec les méthodes présentées dans cette thèse, permettent de surmonter des problèmes indiqués par la littérature et peuvent être un bon fondement pour l'implémentation future des systèmes de quantification automatique des particularités de l'arbre bronchique / Computed tomography is a very useful technic which allow non-invasive diagnosis in many applications for example is used with success in industry and medicine. However, manual analysis of the interesting structures can be tedious and extremely time consuming, or even impossible due its complexity. Therefore in this thesis we study and develop discrete geometry and topology algorithms suitable for use in many practical applications, especially, in the problem of automatic quantitative analysis of the human airway trees based on computed tomography images. In the first part, we define basic notions used in discrete topology and geometry then we showed that several class of discrete methods like skeletonisation algorithms, medial axes, tunnels closing algorithms and tangent estimators, are widely used in several different practical application. The second part consist of a proposition and theory of a new methods for solving particular problems. We introduced two new medial axis filtering method. The hierarchical scale medial axis which is based on previously proposed scale axis transform, however, is free of drawbacks introduced in the previously proposed method and the discrete adaptive medial axis where the filtering parameter is dynamically adapted to the local size of the object. In this part we also introduced an efficient and parameter less new tangent estimators along three-dimensional discrete curves, called 3D maximal segment tangent direction. Finally, we showed that discrete geometry and topology algorithms can be useful in the problem of quantitative analysis of the human airway trees based on computed tomography images. According to proposed in the literature design of such system we applied discrete topology and geometry algorithms to solve particular problems at each step of the quantitative analysis process. First, we propose a robust method for segmenting airway tree from CT datasets. The method is based on the tunnel closing algorithm and is used as a tool to repair, damaged by acquisition errors, CT images. We also proposed an algorithm for creation of an artificial model of the bronchial tree and we used such model to validate algorithms presented in this work. Then, we compare the quality of different algorithms using set of experiments conducted on computer phantoms and real CT dataset. We show that recently proposed methods which works in cubical complex framework, together with methods introduced in this work can overcome problems reported in the literature and can be a good basis for the further implementation of the system for automatic quantification of bronchial tree properties

Page generated in 0.0574 seconds