• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Poincaré Conjecture

Peck, Joseph D. 01 May 1971 (has links)
The central theme for this paper is provided by the following three statements: (1) Every compact connected 1-manifold is S1. (2) Every compact connected simply connected 2-manifold is S2. (3) Every compact connected simply connected 3-manifold is S3. We provide proofs of statements (1) and (2). The veracity of the third statement, the Poincaré Conjecture, has not been determined. It is known that should a counter-example exist it can be found by removing from S3 a finite collect ion of solid tori and sewing them back differently. We show that it is not possible to find a counterexample by removing from S3 a single solid torus of twist knot type or torus knot type and sewing it back differently. We treat as special cases a solid torus of trivial knot type and trefoil knot type.

Page generated in 0.0603 seconds