• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Miniaturization of Linear Ion Traps and Ion Motion Study in a Toroidal Ion Trap Mass Analyzer

Li, Ailin 01 August 2017 (has links)
I describe the miniaturization of a linear-type ion trap mass spectrometer for possible applications in portable chemical analysis, and demonstrate the advantages of using lithographically patterned electrode plates in realizing an ion trap with dimension r0 less than 1 mm. The focus of the work was to demonstrate the viability and feasibility of the patterned electrode approach to trap miniaturization, and also to discover potential obstacles to its use. Planar ceramic substrates were patterned with metal electrodes using photolithography. Plates that were originally used in a linear trap with a half-spacing (r0) of 2.19 mm were positioned much closer together such that r0 = 0.95 mm. A capacitive voltage divider provided different radiofrequency (RF) amplitudes to each electrode, and the capacitor values were adjusted to provide the correct electric field at this closer spacing. Electron ionization mass spectra of toluene and dichloromethane demonstrate instrument performance with better than unit mass resolution. Compared with the larger plate spacing, the signal intensity is reduced, corresponding to the reduced trapping capacity of the smaller device, but the mass resolution of the larger device is retained. A further miniaturized linear ion trap with a half-spacing of 362 µm was designed and tested. A series of obstacles and troubleshooting on ion source, analytical method, and electronics were present. These experiments show promise for further miniaturization using patterned ceramic plates and provide a guide for the ion trap miniaturization. The feasibility of a wire linear ion trap was also demonstrated. Unit mass resolution was obtained, indicating a promise for further optimization and miniaturization of the wire linear ion trap. In addition to the practical experiments on the miniaturized linear ion traps, I theoretically studied ion motion in the toroidal ion trap using SIMION simulations, which show classical chaotic behavior of single ions. The chaotic motion is a result of the non-linear components of the electric fields as established by the trap electrodes, and not by Coulombic interaction from other ions. The chaotic behavior was observed specifically in the ejection direction of ions located in non-linear resonance bands within and adjacent to the region of stable trapping. The non-linear bands crossing through the stability regions correspond to hexapole resonance conditions, while the chaotic ejection observed immediately adjacent to the stable trapping region corresponds to a "fuzzy" ejection boundary. Fractal-like patterns were obtained in a series of zoomed-in regions of the stability diagram.
2

Ion Trajectory Simulations and Design Optimization of Toroidal Ion Trap Mass Spectrometers

Higgs, Jessica Marie 01 December 2017 (has links)
Ion traps can easily be miniaturized to become portable mass spectrometers. Trapped ions can be ejected by adjusting voltage settings of the radiofrequency (RF) signal applied to the electrodes. Several ion trap designs include the quadrupole ion trap (QIT), cylindrical ion trap (CIT), linear ion trap (LIT), rectilinear ion trap (RIT), toroidal ion trap, and cylindrical toroidal ion trap. Although toroidal ion traps are being used more widely in miniaturized mass spectrometers, there is a lack of fundamental understanding of how the toroidal electric field affects ion motion, and therefore, the ion trap's performance as a mass analyzer. Simulation programs can be used to discover how traps with toroidal geometry can be optimized. Potential mapping, field calculations, and simulations of ion motion were used to compare three types of toroidal ion traps: a symmetric and an asymmetric trap made using hyperbolic electrodes, and a simplified trap made using cylindrical electrodes. Toroidal harmonics, which represent solutions to the Laplace equation in a toroidal coordinate system, may be useful to understand toroidal ion traps. Ion trapping and ion motion simulations were performed in a time-varying electric potential representing the symmetric, second-order toroidal harmonic of the second kind—the solution most analogous to the conventional, Cartesian quadrupole. This potential distribution, which we call the toroidal quadrupole, demonstrated non-ideal features in the stability diagram of the toroidal quadrupole which were similar to that for conventional ion traps with higher-order field contributions. To eliminate or reduce these non-ideal features, other solutions to the Laplace equation can be added to the toroidal quadrupole, namely the toroidal dipole, toroidal hexapole, toroidal octopole, and toroidal decapole. The addition of a toroidal hexapole component to the toroidal quadrupole provides improvement in ion trapping, and is expected to play an important role in optimizing the performance of all types of toroidal ion trap mass spectrometers.The cylindrical toroidal ion trap has been miniaturized for a portable mass spectrometer. The first miniaturized version (r0 and z0 reduced by 1/3) used the same central electrode and alignment sleeve as the original design, but it had too high of capacitance for the desired RF frequency. The second miniaturized version (R, r0, and z0 reduced by 1/3) was designed with much less capacitance, but several issues including electrode alignment and sample pressure control caused the mass spectra to have poor resolution. The third miniaturized design used a different alignment method, and its efficiency still needs to be improved.
3

Halo Ion Trap Mass Spectrometry: Design, Instrumentation, and Performance

Wang, Miao 02 November 2010 (has links) (PDF)
New ion trap mass spectrometry (ITMS) instrumentation, the toroidal IT and halo IT, were developed to meet the significant growth in on-site analysis applications. The miniature toroidal IT mass analyzer was operated with radio frequency (RF) trapping voltages of 3 kVp-p or less. Despite its reduced dimensions, it has roughly the same ion trapping capacity as conventional 3D quadrupole ITs. Unit-mass resolved spectra for n-butylbenzene, xenon, and naphthalene were obtained. The desired linear mass scale was obtained using conventional mass-selective instability scan combined with resonance ejection. The halo IT was also based on toroidal trapping geometry and microfabrication technology, consisting of two parallel ceramic plates, the facing surfaces of which were imprinted with sets of concentric ring electrodes. Unlike conventional ITs, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo IT were established by applying different RF potentials to each ring. The potential on each ring could be independently optimized to provide the best trapping field. The halo IT featured an open structure, allowing easy access for in situ ionization. The toroidal geometry provided a large trapping volume. The photolithographic fabrication method avoided difficulty in meeting the required machining tolerances. Preliminary mass spectra showed resolution (m/δ m) of 60–75 when the trap was operated at 1.9 MHz and 500 Vp-p. Ion ejection through a hole in the center of the trap, and through slits machined in the ceramic plates were evaluated. The latter ejection method was done to mimic the design of the toroidal IT. The preferred electric fields containing higher order components were optimized by adjusting the potentials applied to the electrode rings of the halo IT without changing the original trapping plates and structure of the IT. The performance of the halo IT with 1% to 7% octopole field (A4/A2) components was determined. A best resolution of 280 (m/δ m) was obtained with 5% octopole field. SIMION simulations were used to demonstrate the toroidal trapping of ions and their mass analysis in both toroidal and halo ITs.
4

Varying the Aspect Ratio of Toroidal Ion Traps: Implications for Design, Performance, and Miniaturization

Hettikankanange, Praneeth Madushan 07 December 2020 (has links)
A large aspect ratio leads to higher ion capacity in miniaturized ion trap mass spectrometers. The aspect ratio (AR) of an ion trap represents the ratio between an extended trapping dimension and the characteristic trapping dimension. In contrast to linear and rectilinear traps, changing the AR of a toroidal ion trap (TorIT) results in changes to the degree of curvature and shape of the trapping potential, and hence, on performance as a mass analyzer. SIMION simulations show that higher-order terms in the trapping potential vary strongly for small and moderate AR values (below ~10), with the effects asymptotically flattening for larger AR values. Because of the asymmetry in electrode geometry, the trapping center does not coincide with the geometric center of the trap, and this displacement also varies with AR. For instance, in the asymmetric TorIT, the saddle point in the trapping potential and the geometric trap center differ from +0.6 to -0.4 mm depending on AR. Ion secular frequencies also change with the AR. Whereas ions in the simplified TorIT have stable trajectories for any value of AR, ions in the asymmetric TorIT become unstable at large AR values. Variations in high-order terms, the trapping center, and secular frequencies with AR are a unique feature of toroidal traps, and require significant changes in trap design and operation as the aspect ratio is changed.
5

Microfabrication Processes and Advancements in Planar Electrode Ion Traps as Mass Spectrometers

Hansen, Brett Jacob 20 March 2013 (has links) (PDF)
This dissertation presents advances in the development of planar electrode ion traps. An ion trap is a device that can be used in mass analysis applications. Electrode surfaces create an electric field profile that trap ionized molecules of an analyte. The electric fields can then be manipulated to mass-selectively eject ions out of the trap into a detector. The resulting data can be used to analyze molecular structure and composition of an unknown compound. Conventional ion traps require machined electrode surfaces to form the electric trapping field. This class of electrode presents significant obstacles when attempting to miniaturize ion traps to create portable mass spectrometers. Machined electrodes lose required precision in shape, smoothness, and alignment as trapping dimensions decrease. Simplified electrode geometries are essential to open the way to miniaturized ion traps. The planar electrode ion trap presents a simplified geometry that utilizes photolithography processes in its fabrication. Patterns of electrodes are patterned on a planar ceramic substrate. Electric fields generated by these patterns can be nearly identical to those of ideal ion traps. The microfabrication processes involve the challenge of patterning on ceramic, patterning on two sides of a substrate, and patterning on a substrate with high topographic features. Four successful designs of planar ion traps are presented in this work: the planar Paul, toroidal, coaxial, and linear ion trap. These four designs have different strengths and weaknesses. The planar Paul trap is simpler to design and operate, the toroidal has a larger ion storage volume and so can be a more sensitive instrument, and the coaxial trap is a hybrid planar Paul and toroidal trap. The linear trap combines the simplicity of the planar Paul trap with the increased storage capacity of the toroidal trap. This work presents how these four designs advance work in miniaturized ion traps. In addition, microfabrication techniques and trap performance for these designs are presented.
6

Design and Evaluation of Miniaturized Ion Trap Mass Analyzers Using Simulation

Gamage, Radhya Weligama 24 October 2022 (has links)
Mass spectrometry is a technique that analyzes the chemical compositions of compounds based on the mass-to-charge ratio of their ionized constituents. Miniaturized ion trap mass spectrometry finds application in a wide range of fields where portable, rugged, and reliable analytical instruments are required. Ion traps of various designs have been introduced over the past decades, each with their own unique advantages and capabilities. However, the process of developing a novel miniaturized ion trap mass spectrometer continues to be fraught with challenges. This dissertation discusses simulation studies pertaining to the development of a novel dual ion trap, the simplified coaxial ion trap, consisting of a simplified toroidal ion trap and a cylindrical ion trap. Ions are initially trapped in the toroidal region and the target ions are transferred to the cylindrical region where they are fragmented and mass analyzed, while the rest of the ion population remains securely trapped in the toroidal region. The compact design and extended trapping volume secure several advantages that are not available to conventional ion trap designs. The simulations were geared towards the determination of an optimized geometry and optimal operating conditions for the simplified coaxial ion trap. Four main criteria were used in the determination of the ideal geometric and operating conditions; namely, mass-selectivity of transfer from the toroidal to cylindrical traps, transfer and trapping efficiency in the cylindrical ion trap, mass resolution, and unidirectional ejection. The optimized geometry demonstrates successful trapping of ions in the toroidal region and selective transfer of target ions to the cylindrical region. Unidirectional inward ejection of ions could be achieved with a positive hexapole component in the electric field. The mass resolution under optimized conditions of the toroidal trap was 0.3 Da (FWHM), which agrees with the experimental value. The simplified coaxial ion trap yielded a total transfer and trapping efficiency of 25%. A number of suggestions to improve the efficiency are also discussed as part of this work.
7

High Flow Air Sampling for Field Detection Using Gas Chromatography-Mass Spectrometry

Murray, Jacolin Ann 01 December 2010 (has links) (PDF)
The ability to rapidly detect and identify hazardous analytes in the field has become increasingly important. One of the most important analytical detection methods in the field is gas chromatography-mass spectrometry (GC-MS). In this work, a hand-portable GC-MS system is described that contains a miniature toroidal ion trap mass analyzer and a low thermal mass GC. The system is self-contained within the dimensions of 47 x 36 x 18 cm and weighs less than 13 kg. Because the instrument has a small footprint, it was used as the detector for an automated near-real-time permeation testing system. In permeation testing, materials that are used to make individual protective equipment such as gloves, masks, boots, and suits are exposed to hazardous analytes to determine how long the equipment can be worn safely. The system described herein could test five samples simultaneously. A multi-position valve rotated among the various sample streams and delivered time aliquots into the MS for quantitation. Current field air sampling techniques suffer from long desorption times, high pressure drops, artifact formation and water retention. These disadvantages can be avoided by concentrating the analytes in short open tubular traps containing thick films. There are several advantages to using polymer coated capillaries as traps, including fast desorption, inertness and low flow restriction. An air sampling trap was constructed utilizing open tubular traps for the concentration of semi-volatile organic compounds. The system consisted of multiple capillary traps bundled together, providing high sample flow rates. The analytes were desorbed from the multi-capillary bundle and refocused in a secondary trap. The simultaneous focusing and separation effect of a trap subjected to a negative temperature gradient was also explored. In this configuration, analytes were focused because the front of the peak was at a lower temperature than the rear of the peak and, hence, moved slower. In addition to the focusing effect, analytes with different volatilities focused at different temperatures within the gradient, allowing for separation.
8

Numerical Studies of Axially Symmetric Ion Trap Mass Analysers

Kotana, Appala Naidu January 2017 (has links) (PDF)
In this thesis we have focussed on two types of axially symmetric ion trap mass analysers viz., the quadrupole ion trap mass analyser and the toroidal ion trap mass analyser. We have undertaken three numerical studies in this thesis, one study is on the quadrupole ion trap mass analysers and two studies are on the toroidal ion trap mass analysers. The first study is related to improvement of the sensitivity of quadrupole ion trap mass analysers operated in the resonance ejection mode. In the second study we have discussed methods to determine the multipole coefficients in the toroidal ion trap mass analysers. The third study investigates the stability of ions in the toroidal ion trap mass analysers. The first study presents a technique to cause unidirectional ion ejection in a quadrupole ion trap mass spectrometer operated in the resonance ejection mode. In this technique a modified auxiliary dipolar excitation signal is applied to the endcap electrodes. This modified signal is a linear combination of two signals. The first signal is the nominal dipolar excitation signal which is applied across the endcap electrodes and the second signal is the second harmonic of the first signal, the amplitude of the second harmonic being larger than that of the fundamental. We have investigated the effect of the following parameters on achieving unidirectional ion ejection: primary signal amplitude, ratio of amplitude of second harmonic to that of primary signal amplitude, different operating points, different scan rates, different mass to charge ratios and different damping constants. In all these simulations unidirectional ejection of destabilized ions has been successfully achieved. The second study presents methods to determine multipole coefficients for describing the potential in toroidal ion trap mass analysers. Three different methods have been presented to compute the toroidal multipole coefficients. The first method uses a least square fit and is useful when we have ability to compute potential at a set of points in the trapping region. In the second method we use the Discrete Fourier Transform of potentials on a circle in the trapping region. The third method uses surface charge distribution obtained from the Boundary Element Method to compute these coefficients. Using these multipole coefficients we have presented (1) equations of ion motion in toroidal ion traps (2) the Mathieu parameters in terms of multipole coefficients and (3) the secular frequency of ion motion in these traps. It has been shown that the secular frequency obtained from our method has a good match with that obtained from numerical trajectory simulation. The third study presents stability of ions in practical toroidal ion trap mass analysers. Here we have taken up for investigation four geometries with apertures and truncation of electrodes. The stability is obtained in UDC-VRF plane and later this is converted into A-Q plane on the Mathieu stability plot. Though the plots in terms of Mathieu parameters for these structures are qualitatively similar to the corresponding plot of linear ion trap mass analysers, there is a significant difference. The stability plots of these have regions of nonlinear resonances where ion motion is unstable. These resonances have been briefly investigated and it is proposed that they occur on account of hexapole and octopole contributions to the field in these toroidal ion traps.

Page generated in 0.0675 seconds