Spelling suggestions: "subject:"trace errors""
1 |
Tracking-history-based Sleeping Policies for Wireless Sensor NetworksGau, Ding-hau 29 July 2009 (has links)
A wireless sensor network can be used to track an object. Every sensor has limited energy and detecting range. In order to conserve energy, sensors may be put into sleeping mode. A sensor in the sleeping mode can not communicate with other sensors or detect objects. When the object moves to the sensing range of a sleeping sensor, a tracking error occurs. To minimize the tracking error subject to an constraint on energy consumption, we should determine the sleeping schedules of sensors based on the mobility pattern of the object. We propose determining the sleeping schedules based on the observation history of the moving object. We use computer simulation to justify the usage of the proposed approach.
|
2 |
Characteristic errors in 120-H tropical cyclone track forecasts in the western North PacificKehoe, Ryan M. 03 1900 (has links)
Approved for public release, distribution is unlimited / occurring most frequently. For the 217 large-error cases due to midlatitude influences, the most frequent error mechanisms were E-DCI (midlatitude), excessive response to vertical wind shear, excessive midlatitude cyclogenesis (E-MCG), insufficient midlatitude cyclogenesis (I-MCG), excessive midlatitude cyclolysis (E-MCL) and excessive midlatitude anticyclogenesis (E-MAG), which accounted for 68% of all large errors occurring in both NOGAPS and GFDN. Characteristics and symptoms of the erroneous forecast tracks and model fields are documented and illustrative case studies are presented. Proper identification and removal of the track forecast displaying an error mechanism could form a selective consensus that will be more accurate than a non-selective consensus. / Captain, United States Air Force
|
Page generated in 0.0344 seconds