• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Jämförelse av vertikala accelerationer av järnvägsbroar för höghastighetståg. / Comparison of vertical acceleration of railway bridges for high speed trains.

Shoaibi, Martin January 2014 (has links)
Under de senaste decennierna parallellt med klimatdiskussionen har det vuxit fram ett stort intresse för höghastighetståg och en förbättrad infrastruktur i Sverige. I delar av Europa men speciellt i Kina och Japan har utvecklingen av höghastighetståg fått ett enormt lyft. Ett problem vid höjda tåghastigheter är att broarna vid en kombination av låg massa och låg egenfrekvens riskerar att orsaka resonans och höga accelerationsnivåer vid passage. Ballastspår är namnet för det traditionella järnvägsspåret i Sverige. Ballastfria spår är motsatsen till ballastspår. Andra namn för ballastfria spår är Fixerat spår eller slab track. Det är stora skillnader mellan de två olika järnvägssystemen. Det som skiljer traditionella järnvägsspår och ballastfria järnvägsspår är att vid traditionella järnvägsspår fästs rälerna på slipers som därefter packas i makadam. Vid ballastfria järnvägsspår byggs spåret av en längsgående betongplatta istället för makadam. Systemet befästs sedan i betongplattan eller via betongblock som gjuts in i den betongplattan. Ballastfria spår är vanligare vid tunnel- och brobyggen i Europa än de är i Sverige, speciellt vid höghastighetsjärnvägar. Vid dimensionering av olika bärande element i byggnader och anläggningar finns det laster som är tidsberoende. Dessa laster kommer från maskiner, anordningar med rörliga massor, jordbävningar eller fordon på broar. Detta medför svängningar i konstruktionen. I vissa fall är det möjligt att förenkla beräkningen och behandla lasterna som statiska laster. Till exempel genom att tillföra ett så kallat dynamiskt tillskott (schablonvärden) på den statiska lasten. Vid brodimensionering är det krav att en dynamisk analys görs vid hastigheter överstigande 200 km/h. I detta examensjobb har de vertikala accelerationsnivåerna i en järnvägsbro vid högre tåg-hastigheter jämförts för ballasterad- och ballastfri överbyggnad. De tåghastigheter som undersökt är mellan 200 – 300 km/h med steg om 20 km/h. Beräkningarna för järnvägsbron har gjorts i datorprogrammet Brigade plus som är baserat på finita elementanalyser. Scanscot Technology AB är ansvariga utgivare för datorprogrammet. Examensarbetets upplägg har innehållit litteraturstudier angående dynamik samt normer och krav från Eurokod och Trafikverket. / During the last decade with the world’s climate changes a discussion has develop about high speed trains and the ambition to improve the infrastructure in Sweden. In parts of Europe and especially China and Japan it has been in the last decade a very fast growing development in the infrastructure for high speed trains. One of many problems with higher train speed is that the bridges are a combination of low mass and low frequency. This is a risk that can cause resonance and higher vertical acceleration. Ballast track is the name for the traditional railway system in Sweden. The ballastless track is the opposite of ballast track system. Other names for ballastless track is Fixed track or slab track. There are big differences between the two railway systems. The differences between the traditional railway track and the ballastless track are the traditional railroad rails attached to sleepers who then are packed into macadam. The ballastless track built track of a longitudinal concrete slab instead of macadam. The system then consolidated in the concrete slab or through concrete blocks cast in the concrete slab. Ballastless tracks are common in tunnel and bridge construction in Europe than in Sweden, especially in high-speed railways. When dimensioning different carrying elements in buildings and constructions there are time-dependent loads to take in account. These loads come from machines, constructions with dynamic masses, earthquakes or vehicles on bridges and causes oscillations in the construction. It is possible in some cases to simplify the calculations and treat the loads as static loads, for example, by adding a so called dynamic contribution to the static load. When calculating the dimensions for a bridge, a dynamic analysis for speeds above 200 km/h is required. In this thesis has the vertical acceleration that arises in the lane been compared for ballast and non-ballast systems for a railway bridge. The speeds that have been investigated are 200 – 300 km/h with 20 km/h interval. The calculations for the bridge have been done in the programme Brigade plus that is based on FEM analysis. Scanscot Technology AB is the company who is accountable for the software program Brigade plus. The thesis setup has been literature studies about dynamic analysis, standards and demands from Eurokod and Trafikverket.
2

Trafikbelastade gårdsbjälklag : En undersökning av beräkningsmetoders lämplighet och möjliga förenklingar i projekteringsprocessen

Härd, Johan, Skoglund, Mårten January 2019 (has links)
As a structural designer, you are sometimes required to design structures carrying traffic loads, but which are not, for example, bridges or parking garages. In practice, this usually applies to drivable floor layers and culverts under roads. When designing structures such as bridges and parking garages, there are clear standards and regulations to follow. These types of guidelines are not as comprehensive when it comes specifically to dimensioning traffic-load-bearing constructions in connection with building construction. Frequently, an evenly distributed load of 20 kN/m2 is used. The purpose of this work is to investigate which regulations house construction designers should relate to when designing structures that carry traffic loads which are not bridges or parking garages. The work also includes an investigation of how suitable different calculation methods are for different types of load cases. The goal is to make recommendations that can streamline the work for construction designers. The material for this work has been obtained through three different methods. In order to gain an understanding of the subject and the current state of knowledge in the field, a literature study has been made. The main part of the work has included qualitative interviews with people who have good experience and knowledge in the field, as well as practical modeling and calculation of load cases. The focus has been on investigating which transverse forces occur for some specific load cases. The study also includes the effect of the fill layer’s thickness on the load spread. For larger floor spans, it is confirmed that an evenly distributed load of 20 kN/m2 is a bit heaped. To dimension after this covers most of the load cases that may occur on a floor layer or similar construction. In some cases, this value could be halved without problem. It also turns out that the shorter the span of the floor, the more the evenly distributed load differs between the different fill layer thicknesses. / Som husbyggnadskonstruktör får man ibland dimensionera konstruktioner som bär trafiklast, men som inte är exempelvis broar eller parkeringsgarage. I praktiken gäller det oftast körbara gårdsbjälklag och kulvertar under vägar. Gårdsbjälklag är ett något diffust begrepp. Vanligen innebär ett gårdsbjälklag ett bjälklag som skiljer insidan av en byggnad från någon typ av innergård. Normalt byggs dessa konstruktioner ovanpå parkeringsgarage eller källarvåningar. Ofta bär gårdsbjälklaget på de massor av material som planteringar, gräsmattor, vägar och gångar innebär. Gårdsbjälklag bär alltså i praktiken ofta på ett tätskikt, isoleringslager, samt diverse överbyggnader. Överbyggnaden kan bestå av jord, stenmaterial eller liknande massor. Dessa gårdsbjälklag kan även vara föremål för trafiklaster. Vanligtvis handlar det om uppställningsplatser för utryckningsfordon, men det finns också gårdsbjälklag där fraktfordon, servicefordon eller personbilar kan köra. Ofta trafikeras gårdsbjälklag även av fordon under byggskedet. Det kan exempelvis vara grävmaskiner, traktorer, lastbilar eller mobila kranar. Vid dimensionering av konstruktioner som broar och parkeringsgarage finns tydliga normer och regelverk att följa. Dessa typer av riktlinjer är inte lika omfattande när det specifikt gäller dimensionering av trafikbelastade konstruktioner i samband med husbyggnad. Ofta används en vedertagen utbredd last på 20 kN/m2. Syftet med detta arbete är att undersöka vilka regelverk husbyggnadskonstruktörer ska förhålla sig till vid dimensionering av konstruktioner som bär trafiklast men som inte är broar eller parkeringsgarage. Arbetet innefattar även en granskning av hur lämpliga olika beräkningsmetoder är för olika typer av lastfall. Målet är att ta fram rekommendationer som kan effektivisera arbetet för konstruktörer inom husbyggnad. Materialet för detta arbete har inhämtats genom tre skilda metoder. För att få en förståelse för ämnet och det aktuella kunskapsläget inom området har en litteraturstudie gjorts. Huvuddelen av arbetet har innefattat dels kvalitativa intervjuer med personer som har god erfarenhet och kunskap inom området, dels praktisk modellering och beräkning av lastfall. Fokus har legat på att undersöka vilka tvärkrafter som uppstår för några specifika lastfall. Undersökningen innefattar även vilken inverkan överbyggnader av olika tjocklek har på lastspridningen. De beräkningsprogram som har använts under arbetet är i synnerhet Strusoft FEM-Design. Även Strusoft Frame Analysis och PTC Mathcad Prime har nyttjats. Vid intervjuer med erfarna husbyggnadskonstruktörer framgick bland annat att dimensioneringsprocessen i de flesta fall är relativt simpel, men att vissa svårigheter kan uppstå, samt att en effektivisering av dimensioneringsprocessen för gårdsbjälklag är möjlig. Båda respondenterna nämnde att många konstruktioner troligen överdimensioneras till följd av användandet av gamla riktlinjer. Hur pass erfaren konstruktören är kan också spela in. Vidare kan det vid beräkning av laster på gårdsbjälklag vara både fördelaktigt och nödvändigt att räkna på lastspridningen i överbyggnadsmaterialet. En utförligare undersökning kring vilka laster man som konstruktör faktiskt bör räkna med för olika lastfall skulle därmed vara av intresse. Enligt en respondent saknas även en tydlig gränsdragning för i vilka fall EKS respektive specifika laster bör användas vid dimensionering. Resultatet från beräkningarna visar att stora utbredda laster uppkommer när spännvidderna blir mindre. Detta blir viktigt att beakta vid dimensionering av exempelvis kulvertar, där punktlasterna för de specifika lastfallen måste tas hänsyn till, givet att överbyggnaden inte är väldigt tilltagen. För större bjälklag bekräftas att en dimensionerande, jämnt utbredd last på 20 kN/m2 är väl tilltagen. Att dimensionera efter detta täcker de absolut flesta lastfallen som kan tänkas förekomma på ett gårdsbjälklag eller liknande konstruktion. I en del fall skulle detta värde kunna halveras utan att problem skulle uppstå. Det visar sig även att ju kortare bjälklagets spännvidd är, desto mer skiljer sig den motsvarande utbredda lasten mellan de olika överbyggnadstjocklekarna.
3

Lastmodellering i FEM-Program : Trafiklaster på broar / Load modeling in a FEM program : Traffic loads on bridges

Moussi, Jessika, Mohammed, Ali January 2018 (has links)
I byggbranschen har nya metoder för lastanalys utvecklats och digitaliserats med hjälp av datorer och kraftfulla analysprogram. En stor del av dagens lastanalys utförs med hjälp av FEM baserade program. Dessa program bidrar till mer tidsbesparing och större noggrannhet.FEM-Design är ett FEM baserad analys program som kan hantera olika typer konstruktioner. Trots detta är inte programmet tillräckligt lämpat för brodimensionering när det gäller trafiklaster på broar. Konstruktören behöver därför gå igenom Eurokods-och Trafikverkets regler och krav för att hitta information kring trafikaster och därefter skapa dem i programmet.För att kunna utnyttja programmets kraftiga funktioner och anpassa det mer för brodimensionering, behöver programmet kompletteras med nya funktioner som underlättar hantering av rörliga laster. Målet var att undersöka olika lastmodeller enligt Eurokoden och TRVFS, och skapa dem i FEM-Design. Dessutom peka ut vilka förbättringar som kan utföras i programmet för att underlätta hantering av dessa trafiklaster.Tillsammans med StruSoft AB utfördes lastdefinitioner av Lastmodell 1, Lastmodell 2, och Lastmodell 3 i programmet FEM-Design.Resultatet av arbetet visar en mängd nya fordonslaster som definierades i programmet och som är baserade på det europeiska Eurokoden, och inhemska krav.Programmet FEM-Design går framgångsrikt att göras mer praktisk för brodimensioneringar. Med fortsatta studier, extra funktioner, och mer lastmodell-definitioner har FEM-Design potentialen att även konkurrera med andra bro-program. / In the construction industry, new methods of load analysis have been developed and digitized using computers and powerful analysis programs. A large part of today's load analysis is performed using FEM based programs, which contributes to time saving and greater accuracy.FEM-Design is a FEM based analysis program that can handle different types of constructions. Nevertheless, the program is not sufficiently applied to bridge dimensioning when it comes to traffic loads on bridges. The designer therefore needs to review the Eurocode rules and national requirements in order to find information about the moving loads and then define them in the program.In order to utilize the program's powerful features and suit it more for bridge dimensioning, the program needs to be complemented with new features that will facilitate the handling of moving loads. The goal was to examine the different load models according to the Eurocode and TRVFS, and creates them in FEM Design. In addition, identify which improvements can be made to the program to facilitate the handling of the traffic loads.Together with StruSoft AB, load definitions of Load model 1, Load model 2, and Load model 3 were performed in the FEM-Design program.The result of the work shows a number of new vehicle loads as defined in the program, which are based on the European Eurocode, and the country's special requirements.The program can successfully be made more practical for bridge constructions. With continued studies, additional features, and more load model definitions, FEM-Design has the potential to compete with other bridge programs.

Page generated in 0.0685 seconds