• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical study of a wind tunnel setup for measuring train slipstream with Detached Eddy Simulation

Dhanabalan, Yogeshwar January 2013 (has links)
High speed trains have become an integral part of the transportation systems around the world. With increasing speed, very high velocities are generated in the region around the train known as slipstream. Experimental studies have been conducted over the last few decades to study the effect of these phenomena. Slipstream velocities have been measured using anemometers placed near real trains running on the tracks and model trains running on rigs like moving model rig and rotating rail rig. However, most of these studies are quite expensive to conduct. The purpose of this thesis is to find an alternative way to measure the slipstream. Detached Eddy Simulation is used to simulate the flow around a 1:15 scaled model of an ETR500 high speed train with different configurations similar to tests conducted on the track and in the wind tunnel. The results from the simulations are compared with the data obtained from experimental tests conducted on the Torino-Novara high speed line. A wind tunnel test is also carried out to validate the CFD data. It is concluded from the results that the wind tunnel setup with a slip floor in front of the train can be used to find out if the train produces slipstream velocities that are within the limits indicated by the TSI standards.
2

Studies of Two Aerodynamic Effects on High-Speed Trains : Crosswind Stability and Discomforting Car Body Vibrations Inside Tunnels

Diedrichs, Ben January 2006 (has links)
QC 20110118
3

Studies of Two Aerodynamic Effects on High-Speed Trains : Crosswind Stability and Discomforting Car Body Vibrations Inside Tunnels

Diedrichs, Ben January 2006 (has links)
No description available.
4

Analysis of Flow Structures in Wake Flows for Train Aerodynamics

Muld, Tomas W. January 2010 (has links)
<p>Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that for high-speed passenger trains the largestslipstream velocities occur in the wake. Therefore the work in this thesis isdevoted to wake flows. First a test case, a surface-mounted cube, is simulatedto test the analysis methodology that is later applied to a train geometry, theAerodynamic Train Model (ATM). Results on both geometries are comparedwith other studies, which are either numerical or experimental. The comparisonfor the cube between simulated results and other studies is satisfactory, whiledue to a trip wire in the experiment the results for the ATM do not match.The computed flow fields are used to compute the POD and Koopman modes.For the cube this is done in two regions of the flow, one to compare with a priorpublished study Manhart & Wengle (1993) and another covering more of theflow and especially the wake of the cube. For the ATM, a region containing theimportant flow structures is identified in the wake, by looking at instantaneousand fluctuating velocities. To ensure converged POD modes two methods toinvestigate the convergence are proposed, tested and applied. Analysis of themodes enables the identification of the important flow structures. The flowtopologies of the two geometries are very different and the flow structures arealso different, but the same methodology can be applied in both cases. For thesurface-mounted cube, three groups of flow structures are found. First groupis the mean flow and then two kinds of perturbations around the mean flow.The first perturbation is at the edge of the wake, relating to the shear layerbetween the free stream and the disturbed flow. The second perturbation isinside the wake and is the convection of vortices. These groups would then betypical of the separation bubble that exists in the wake of the cube. For theATM the main flow topology consists of two counter rotating vortices. Thiscan be seen in the decomposed modes, which, except for the mean flow, almostonly contain flow structures relating to these vortices.</p> / QC 20100518 / Gröna Tåget
5

Analysis of Flow Structures in Wake Flows for Train Aerodynamics

Muld, Tomas W. January 2010 (has links)
Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that for high-speed passenger trains the largestslipstream velocities occur in the wake. Therefore the work in this thesis isdevoted to wake flows. First a test case, a surface-mounted cube, is simulatedto test the analysis methodology that is later applied to a train geometry, theAerodynamic Train Model (ATM). Results on both geometries are comparedwith other studies, which are either numerical or experimental. The comparisonfor the cube between simulated results and other studies is satisfactory, whiledue to a trip wire in the experiment the results for the ATM do not match.The computed flow fields are used to compute the POD and Koopman modes.For the cube this is done in two regions of the flow, one to compare with a priorpublished study Manhart &amp; Wengle (1993) and another covering more of theflow and especially the wake of the cube. For the ATM, a region containing theimportant flow structures is identified in the wake, by looking at instantaneousand fluctuating velocities. To ensure converged POD modes two methods toinvestigate the convergence are proposed, tested and applied. Analysis of themodes enables the identification of the important flow structures. The flowtopologies of the two geometries are very different and the flow structures arealso different, but the same methodology can be applied in both cases. For thesurface-mounted cube, three groups of flow structures are found. First groupis the mean flow and then two kinds of perturbations around the mean flow.The first perturbation is at the edge of the wake, relating to the shear layerbetween the free stream and the disturbed flow. The second perturbation isinside the wake and is the convection of vortices. These groups would then betypical of the separation bubble that exists in the wake of the cube. For theATM the main flow topology consists of two counter rotating vortices. Thiscan be seen in the decomposed modes, which, except for the mean flow, almostonly contain flow structures relating to these vortices. / QC 20100518 / Gröna Tåget

Page generated in 0.0575 seconds