• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel algorithms and data structures for interactive applications / Algoritmos Paralelos e Estruturas de Dados para Aplicações Interativas / Algorithmes et Structures de Données Parallèles pour Applications Interactives

Toss, Julio January 2017 (has links)
La quête de performance a été une constante à travers l’histoire des systèmes informatiques. Il y a plus d’une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d’épuisement pour satisfaire les exigences de performance. Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes. Avec l’adoption généralisée d’ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s’adapter à ces nouvelles architectures. Cependant, dans des applications non conventionnelles, avec des exigences d’interactivité et de temps réel, la parallélisation efficace est encore un défi majeur. L’exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l’entrée de l’utilisateur dans une itération de calcul de la boucle de simulation. Le même type de contrainte apparaît dans les applications d’analyse de données en continu. Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d’analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache. Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l’indexation statique des données ne conduisent pas aux performances souhaitées. Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes : la première dans le domaine de la simulation physique interactive et la seconde sur l’analyse des données en continu. Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et des diagrammes de Voronoi sur un graphe en forme de grille. Pour le problème d’analyse de données en continu, nous présentons une structure de données parallélisable, basée sur des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout en conservant une bonne localité de mémoire. / A busca por desempenho tem sido uma constante na história dos sistemas computacionais. Ha mais de uma década, o modelo de processamento sequencial já mostrava seus primeiro sinais de exaustão pare suprir a crescente exigência por performance. Houveram "barreiras"para a computação sequencial que levaram a uma mudança de paradigma e estabeleceram o processamento paralelo como padrão nos sistemas computacionais modernos. Com a adoção generalizada de computadores paralelos, novos algoritmos foram desenvolvidos e aplicações reprojetadas para se adequar às características dessas novas arquiteturas. No entanto, em aplicações menos convencionais, com características de interatividade e tempo real, alcançar paralelizações eficientes ainda representa um grande desafio. O requisito por desempenho de tempo real apresenta-se, por exemplo, em simulações interativas onde o sistema deve ser capaz de reagir às entradas do usuário dentro do tempo de uma iteração da simulação. O mesmo tipo de exigência aparece em aplicações de monitoramento de fluxos contínuos de dados (streams). Por exemplo, quando dados provenientes de sensores de tráfego ou postagens em redes sociais são produzidos em fluxo contínuo, o sistema de análise on-line deve ser capaz de processar essas informações em tempo real e ao mesmo tempo manter um consumo de memória controlada A natureza dinâmica desses dados traz diversos problemas de performance, tais como a decomposição do problema para processamento em paralelo e a manutenção da localidade de dados para uma utilização eficiente da memória cache. As estratégias de otimização tradicionais, que dependem de modelos pré-computados ou de índices estáticos sobre os dados, não atendem às exigências de performance necessárias nesses cenários. Nesta tese, abordamos os problemas dependentes de dados em dois contextos diferentes: um na área de simulações baseada em física e outro em análise de dados em fluxo contínuo. Para o problema de simulação, apresentamos um algoritmo paralelo, em GPU, para computar múltiplos caminhos mínimos e diagramas de Voronoi em um grafo com topologia de grade. Para o problema de análise de fluxos de dados, apresentamos uma estrutura de dados paralelizável, baseada em Packed Memory Arrays, para indexar dados dinâmicos geo-localizados ao passo que mantém uma boa localidade de memória. / The quest for performance has been a constant through the history of computing systems. It has been more than a decade now since the sequential processing model had shown its first signs of exhaustion to keep performance improvements. Walls to the sequential computation pushed a paradigm shift and established the parallel processing as the standard in modern computing systems. With the widespread adoption of parallel computers, many algorithms and applications have been ported to fit these new architectures. However, in unconventional applications, with interactivity and real-time requirements, achieving efficient parallelizations is still a major challenge. Real-time performance requirement shows up, for instance, in user-interactive simulations where the system must be able to react to the user’s input within a computation time-step of the simulation loop. The same kind of constraint appears in streaming data monitoring applications. For instance, when an external source of data, such as traffic sensors or social media posts, provides a continuous flow of information to be consumed by an online analysis system. The consumer system has to keep a controlled memory budget and deliver a fast processed information about the stream Common optimizations relying on pre-computed models or static index of data are not possible in these highly dynamic scenarios. The dynamic nature of the data brings up several performance issues originated from the problem decomposition for parallel processing and from the data locality maintenance for efficient cache utilization. In this thesis we address data-dependent problems on two different applications: one on physically based simulations and another on streaming data analysis. To deal with the simulation problem, we present a parallel GPU algorithm for computing multiple shortest paths and Voronoi diagrams on a grid-like graph. Our contribution to the streaming data analysis problem is a parallelizable data structure, based on packed memory arrays, for indexing dynamic geo-located data while keeping good memory locality.
2

Multi-criteria Mapping and Scheduling of Workflow Applications onto Heterogeneous Platforms

Rehn-Sonigo, Veronika 07 July 2009 (has links) (PDF)
Les travaux présentés dans cette thèse portent sur le placement et l'ordonnancement d'applications de flux de données sur des plates-formes hétérogènes. Dans ce contexte, nous nous concentrons sur trois types différents d'applications :<br />Placement de répliques dans les réseaux hiérarchiques - Dans ce type d'application, plusieurs clients émettent des requêtes à quelques serveurs et la question est : où doit-on placer des répliques dans le réseau afin que toutes les requêtes puissent être traitées. Nous discutons et comparons plusieurs politiques de placement de répliques dans des réseaux hiérarchiques en respectant des contraintes de capacité de serveur, de qualité<br />de service et de bande-passante. Les requêtes des clients sont connues a priori, tandis que le nombre et la position des serveurs sont à déterminer. L'approche traditionnelle dans la littérature est de forcer toutes les requêtes d'un client à être traitées par le serveur le plus proche dans le réseau hiérarchique. Nous introduisons et étudions deux nouvelles politiques. Une principale contribution de ce travail est l'évaluation de l'impact de ces nouvelles politiques sur le coût total de replication. Un autre but important est d'évaluer l'impact de l'hétérogénéité des serveurs, d'une perspective à la<br />fois théorique et pratique. Nous établissons plusieurs nouveaux résultats de complexité, et nous présentons plusieurs heuristiques <br />efficaces en temps polynomial.<br />Applications de flux de données - Nous considérons des applications de flux de données qui peuvent être exprimées comme des graphes linéaires. Un exemple pour ce type d'application est le traitement numérique d'images, où les images sont traitées en<br />régime permanent. Plusieurs critères antagonistes doivent être optimisés, tels que le débit et la latence (ou une combinaison) ainsi que la latence et la fiabilité (i.e. la probabilité que le calcul soit réussi) de l'application. Bien qu'il soit possible de trouver<br />des algorithmes polynomiaux simples pour les plates-formes entièrement homogènes, le problème devient NP-difficile lorsqu'on s'attaque à des plates-formes hétérogènes. Nous présentons une formulation en programme linéaire pour ce dernier problème. De<br />plus nous introduisons plusieurs heuristiques bi-critères efficaces en temps polynomial, dont la performance relative est évaluée par des simulations extensives. Dans une étude de cas, nous présentons des simulations et des résultats expérimentaux (programmés en MPI) pour le graphe d'application de l'encodeur JPEG sur une grappe de calcul.<br />Applications complexes de streaming - Considérons l'exécution d'applications organisées en arbres d'opérateurs, i.e. l'application en régime permanent d'un ou plusieurs arbres d'opérateurs à données multiples qui doivent être mis à jour continuellement à différents endroits du réseau. Un premier but est de fournir à l'utilisateur un ensemble de processeurs qui doit être acheté ou loué pour garantir que le débit minimum de l'application en régime permanent soit atteint. Puis nous étendons notre modèle aux applications multiples : plusieurs applications concurrentes sont exécutées en même<br />temps dans un réseau, et on doit assurer que toutes les applications puissent atteindre leur débit requis. Une autre contribution de ce travail est d'apporter des résultats de complexité pour des instances variées du problème. La troisième contribution est l'élaboration<br />de plusieurs heuristiques polynomiales pour les deux modèles d'application. Un objectif premier des heuristiques pour applications concurrentes est la réutilisation des résultats intermédiaires qui sont partagés parmi différentes applications.
3

Parallel algorithms and data structures for interactive applications / Algoritmos Paralelos e Estruturas de Dados para Aplicações Interativas / Algorithmes et Structures de Données Parallèles pour Applications Interactives

Toss, Julio January 2017 (has links)
La quête de performance a été une constante à travers l’histoire des systèmes informatiques. Il y a plus d’une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d’épuisement pour satisfaire les exigences de performance. Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes. Avec l’adoption généralisée d’ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s’adapter à ces nouvelles architectures. Cependant, dans des applications non conventionnelles, avec des exigences d’interactivité et de temps réel, la parallélisation efficace est encore un défi majeur. L’exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l’entrée de l’utilisateur dans une itération de calcul de la boucle de simulation. Le même type de contrainte apparaît dans les applications d’analyse de données en continu. Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d’analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache. Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l’indexation statique des données ne conduisent pas aux performances souhaitées. Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes : la première dans le domaine de la simulation physique interactive et la seconde sur l’analyse des données en continu. Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et des diagrammes de Voronoi sur un graphe en forme de grille. Pour le problème d’analyse de données en continu, nous présentons une structure de données parallélisable, basée sur des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout en conservant une bonne localité de mémoire. / A busca por desempenho tem sido uma constante na história dos sistemas computacionais. Ha mais de uma década, o modelo de processamento sequencial já mostrava seus primeiro sinais de exaustão pare suprir a crescente exigência por performance. Houveram "barreiras"para a computação sequencial que levaram a uma mudança de paradigma e estabeleceram o processamento paralelo como padrão nos sistemas computacionais modernos. Com a adoção generalizada de computadores paralelos, novos algoritmos foram desenvolvidos e aplicações reprojetadas para se adequar às características dessas novas arquiteturas. No entanto, em aplicações menos convencionais, com características de interatividade e tempo real, alcançar paralelizações eficientes ainda representa um grande desafio. O requisito por desempenho de tempo real apresenta-se, por exemplo, em simulações interativas onde o sistema deve ser capaz de reagir às entradas do usuário dentro do tempo de uma iteração da simulação. O mesmo tipo de exigência aparece em aplicações de monitoramento de fluxos contínuos de dados (streams). Por exemplo, quando dados provenientes de sensores de tráfego ou postagens em redes sociais são produzidos em fluxo contínuo, o sistema de análise on-line deve ser capaz de processar essas informações em tempo real e ao mesmo tempo manter um consumo de memória controlada A natureza dinâmica desses dados traz diversos problemas de performance, tais como a decomposição do problema para processamento em paralelo e a manutenção da localidade de dados para uma utilização eficiente da memória cache. As estratégias de otimização tradicionais, que dependem de modelos pré-computados ou de índices estáticos sobre os dados, não atendem às exigências de performance necessárias nesses cenários. Nesta tese, abordamos os problemas dependentes de dados em dois contextos diferentes: um na área de simulações baseada em física e outro em análise de dados em fluxo contínuo. Para o problema de simulação, apresentamos um algoritmo paralelo, em GPU, para computar múltiplos caminhos mínimos e diagramas de Voronoi em um grafo com topologia de grade. Para o problema de análise de fluxos de dados, apresentamos uma estrutura de dados paralelizável, baseada em Packed Memory Arrays, para indexar dados dinâmicos geo-localizados ao passo que mantém uma boa localidade de memória. / The quest for performance has been a constant through the history of computing systems. It has been more than a decade now since the sequential processing model had shown its first signs of exhaustion to keep performance improvements. Walls to the sequential computation pushed a paradigm shift and established the parallel processing as the standard in modern computing systems. With the widespread adoption of parallel computers, many algorithms and applications have been ported to fit these new architectures. However, in unconventional applications, with interactivity and real-time requirements, achieving efficient parallelizations is still a major challenge. Real-time performance requirement shows up, for instance, in user-interactive simulations where the system must be able to react to the user’s input within a computation time-step of the simulation loop. The same kind of constraint appears in streaming data monitoring applications. For instance, when an external source of data, such as traffic sensors or social media posts, provides a continuous flow of information to be consumed by an online analysis system. The consumer system has to keep a controlled memory budget and deliver a fast processed information about the stream Common optimizations relying on pre-computed models or static index of data are not possible in these highly dynamic scenarios. The dynamic nature of the data brings up several performance issues originated from the problem decomposition for parallel processing and from the data locality maintenance for efficient cache utilization. In this thesis we address data-dependent problems on two different applications: one on physically based simulations and another on streaming data analysis. To deal with the simulation problem, we present a parallel GPU algorithm for computing multiple shortest paths and Voronoi diagrams on a grid-like graph. Our contribution to the streaming data analysis problem is a parallelizable data structure, based on packed memory arrays, for indexing dynamic geo-located data while keeping good memory locality.
4

Algorithmes et structures de données parallèles pour applications interactives / Parallel algorithms and data structures for interactive data problems

Toss, Julio 26 October 2017 (has links)
La quête de performance a été une constante à travers l'histoire des systèmes informatiques.Il y a plus d'une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d'épuisement pour satisfaire les exigences de performance.Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes.Avec l'adoption généralisée d'ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s'adapter à ces nouvelles architectures.Cependant, dans des applications non conventionnelles, avec des exigences d'interactivité et de temps réel, la parallélisation efficace est encore un défi majeur.L'exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l'entrée de l'utilisateur dans une itération de calcul de la boucle de simulation.Le même type de contrainte apparaît dans les applications d'analyse de données en continu.Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d'analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé.La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache.Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l'indexation statique des données ne conduisent pas aux performances souhaitées.Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes: la première dans le domaine de la simulation physique interactive et la seconde sur l'analyse des données en continu.Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et des diagrammes de Voronoi sur un graphe en forme de grille.Pour le problème d'analyse de données en continu, nous présentons une structure de données parallélisable, basée sur des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout en conservant une bonne localité de mémoire. / The quest for performance has been a constant through the history of computing systems. It has been more than a decade now since the sequential processing model had shown its first signs of exhaustion to keep performance improvements.Walls to the sequential computation pushed a paradigm shift and established the parallel processing as the standard in modern computing systems. With the widespread adoption of parallel computers, many algorithms and applications have been ported to fit these new architectures. However, in unconventional applications, with interactivity and real-time requirements, achieving efficient parallelizations is still a major challenge.Real-time performance requirement shows-up, for instance, in user-interactive simulations where the system must be able to react to the user's input within a computation time-step of the simulation loop. The same kind of constraint appears in streaming data monitoring applications. For instance, when an external source of data, such as traffic sensors or social media posts, provides a continuous flow of information to be consumed by an on-line analysis system. The consumer system has to keep a controlled memory budget and delivery fast processed information about the stream.Common optimizations relying on pre-computed models or static index of data are not possible in these highly dynamic scenarios. The dynamic nature of the data brings up several performance issues originated from the problem decomposition for parallel processing and from the data locality maintenance for efficient cache utilization.In this thesis we address data-dependent problems on two different application: one in physics-based simulation and other on streaming data analysis. To the simulation problem, we present a parallel GPU algorithm for computing multiple shortest paths and Voronoi diagrams on a grid-like graph. To the streaming data analysis problem we present a parallelizable data structure, based on packed memory arrays, for indexing dynamic geo-located data while keeping good memory locality.
5

Parallel algorithms and data structures for interactive applications / Algoritmos Paralelos e Estruturas de Dados para Aplicações Interativas / Algorithmes et Structures de Données Parallèles pour Applications Interactives

Toss, Julio January 2017 (has links)
La quête de performance a été une constante à travers l’histoire des systèmes informatiques. Il y a plus d’une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d’épuisement pour satisfaire les exigences de performance. Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes. Avec l’adoption généralisée d’ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s’adapter à ces nouvelles architectures. Cependant, dans des applications non conventionnelles, avec des exigences d’interactivité et de temps réel, la parallélisation efficace est encore un défi majeur. L’exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l’entrée de l’utilisateur dans une itération de calcul de la boucle de simulation. Le même type de contrainte apparaît dans les applications d’analyse de données en continu. Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d’analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache. Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l’indexation statique des données ne conduisent pas aux performances souhaitées. Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes : la première dans le domaine de la simulation physique interactive et la seconde sur l’analyse des données en continu. Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et des diagrammes de Voronoi sur un graphe en forme de grille. Pour le problème d’analyse de données en continu, nous présentons une structure de données parallélisable, basée sur des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout en conservant une bonne localité de mémoire. / A busca por desempenho tem sido uma constante na história dos sistemas computacionais. Ha mais de uma década, o modelo de processamento sequencial já mostrava seus primeiro sinais de exaustão pare suprir a crescente exigência por performance. Houveram "barreiras"para a computação sequencial que levaram a uma mudança de paradigma e estabeleceram o processamento paralelo como padrão nos sistemas computacionais modernos. Com a adoção generalizada de computadores paralelos, novos algoritmos foram desenvolvidos e aplicações reprojetadas para se adequar às características dessas novas arquiteturas. No entanto, em aplicações menos convencionais, com características de interatividade e tempo real, alcançar paralelizações eficientes ainda representa um grande desafio. O requisito por desempenho de tempo real apresenta-se, por exemplo, em simulações interativas onde o sistema deve ser capaz de reagir às entradas do usuário dentro do tempo de uma iteração da simulação. O mesmo tipo de exigência aparece em aplicações de monitoramento de fluxos contínuos de dados (streams). Por exemplo, quando dados provenientes de sensores de tráfego ou postagens em redes sociais são produzidos em fluxo contínuo, o sistema de análise on-line deve ser capaz de processar essas informações em tempo real e ao mesmo tempo manter um consumo de memória controlada A natureza dinâmica desses dados traz diversos problemas de performance, tais como a decomposição do problema para processamento em paralelo e a manutenção da localidade de dados para uma utilização eficiente da memória cache. As estratégias de otimização tradicionais, que dependem de modelos pré-computados ou de índices estáticos sobre os dados, não atendem às exigências de performance necessárias nesses cenários. Nesta tese, abordamos os problemas dependentes de dados em dois contextos diferentes: um na área de simulações baseada em física e outro em análise de dados em fluxo contínuo. Para o problema de simulação, apresentamos um algoritmo paralelo, em GPU, para computar múltiplos caminhos mínimos e diagramas de Voronoi em um grafo com topologia de grade. Para o problema de análise de fluxos de dados, apresentamos uma estrutura de dados paralelizável, baseada em Packed Memory Arrays, para indexar dados dinâmicos geo-localizados ao passo que mantém uma boa localidade de memória. / The quest for performance has been a constant through the history of computing systems. It has been more than a decade now since the sequential processing model had shown its first signs of exhaustion to keep performance improvements. Walls to the sequential computation pushed a paradigm shift and established the parallel processing as the standard in modern computing systems. With the widespread adoption of parallel computers, many algorithms and applications have been ported to fit these new architectures. However, in unconventional applications, with interactivity and real-time requirements, achieving efficient parallelizations is still a major challenge. Real-time performance requirement shows up, for instance, in user-interactive simulations where the system must be able to react to the user’s input within a computation time-step of the simulation loop. The same kind of constraint appears in streaming data monitoring applications. For instance, when an external source of data, such as traffic sensors or social media posts, provides a continuous flow of information to be consumed by an online analysis system. The consumer system has to keep a controlled memory budget and deliver a fast processed information about the stream Common optimizations relying on pre-computed models or static index of data are not possible in these highly dynamic scenarios. The dynamic nature of the data brings up several performance issues originated from the problem decomposition for parallel processing and from the data locality maintenance for efficient cache utilization. In this thesis we address data-dependent problems on two different applications: one on physically based simulations and another on streaming data analysis. To deal with the simulation problem, we present a parallel GPU algorithm for computing multiple shortest paths and Voronoi diagrams on a grid-like graph. Our contribution to the streaming data analysis problem is a parallelizable data structure, based on packed memory arrays, for indexing dynamic geo-located data while keeping good memory locality.
6

Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure / Mécanismes prenant en compte la qualité de service pour la (re)configuration d’applications de traitement de flux de données sur une infrastructure hautement distribuée

Da Silva Veith, Alexandre 23 September 2019 (has links)
Une grande partie de ces données volumineuses ont plus de valeur lorsqu'elles sont analysées rapidement, au fur et à mesure de leur génération. Dans plusieurs scénarios d'application émergents, tels que les villes intelligentes, la surveillance opérationnelle de grandes infrastructures et l'Internet des Objets (Internet of Things), des flux continus de données doivent être traités dans des délais très brefs. Dans plusieurs domaines, ce traitement est nécessaire pour détecter des modèles, identifier des défaillances et pour guider la prise de décision. Les données sont donc souvent rassemblées et analysées par des environnements logiciels conçus pour le traitement de flux continus de données. Ces environnements logiciels pour le traitement de flux de données déploient les applications sous-la forme d'un graphe orienté ou de dataflow. Un dataflow contient une ou plusieurs sources (i.e. capteurs, passerelles ou actionneurs); opérateurs qui effectuent des transformations sur les données (e.g., filtrage et agrégation); et des sinks (i.e., éviers qui consomment les requêtes ou stockent les données). Nous proposons dans cette thèse un ensemble de stratégies pour placer les opérateurs dans une infrastructure massivement distribuée cloud-edge en tenant compte des caractéristiques des ressources et des exigences des applications. En particulier, nous décomposons tout d'abord le graphe d'application en identifiant quelques comportements tels que des forks et des joints, puis nous le plaçons dynamiquement sur l'infrastructure. Des simulations et un prototype prenant en compte plusieurs paramètres d'application démontrent que notre approche peut réduire la latence de bout en bout de plus de 50% et aussi améliorer d'autres métriques de qualité de service. L'espace de recherche de solutions pour la reconfiguration des opérateurs peut être énorme en fonction du nombre d'opérateurs, de flux, de ressources et de liens réseau. De plus, il est important de minimiser le coût de la migration tout en améliorant la latence. Des travaux antérieurs, Reinforcement Learning (RL) et Monte-Carlo Tree Searh (MCTS) ont été utilisés pour résoudre les problèmes liés aux grands nombres d’actions et d’états de recherche. Nous modélisons le problème de reconfiguration d'applications sous la forme d'un processus de décision de Markov (MDP) et étudions l'utilisation des algorithmes RL et MCTS pour concevoir des plans de reconfiguration améliorant plusieurs métriques de qualité de service. / A large part of this big data is most valuable when analysed quickly, as it is generated. Under several emerging application scenarios, such as in smart cities, operational monitoring of large infrastructure, and Internet of Things (IoT), continuous data streams must be processed under very short delays. In multiple domains, there is a need for processing data streams to detect patterns, identify failures, and gain insights. Data is often gathered and analysed by Data Stream Processing Engines (DSPEs).A DSPE commonly structures an application as a directed graph or dataflow. A dataflow has one or multiple sources (i.e., gateways or actuators); operators that perform transformations on the data (e.g., filtering); and sinks (i.e., queries that consume or store the data). Most complex operator transformations store information about previously received data as new data is streamed in. Also, a dataflow has stateless operators that consider only the current data. Traditionally, Data Stream Processing (DSP) applications were conceived to run in clusters of homogeneous resources or on the cloud. In a cloud deployment, the whole application is placed on a single cloud provider to benefit from virtually unlimited resources. This approach allows for elastic DSP applications with the ability to allocate additional resources or release idle capacity on demand during runtime to match the application requirements.We introduce a set of strategies to place operators onto cloud and edge while considering characteristics of resources and meeting the requirements of applications. In particular, we first decompose the application graph by identifying behaviours such as forks and joins, and then dynamically split the dataflow graph across edge and cloud. Comprehensive simulations and a real testbed considering multiple application settings demonstrate that our approach can improve the end-to-end latency in over 50% and even other QoS metrics. The solution search space for operator reassignment can be enormous depending on the number of operators, streams, resources and network links. Moreover, it is important to minimise the cost of migration while improving latency. Reinforcement Learning (RL) and Monte-Carlo Tree Search (MCTS) have been used to tackle problems with large search spaces and states, performing at human-level or better in games such as Go. We model the application reconfiguration problem as a Markov Decision Process (MDP) and investigate the use of RL and MCTS algorithms to devise reconfiguring plans that improve QoS metrics.

Page generated in 0.1575 seconds