• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 56
  • 17
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 157
  • 126
  • 85
  • 70
  • 45
  • 43
  • 38
  • 36
  • 32
  • 28
  • 26
  • 26
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
252

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
253

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
254

Σύνθεση και χαρακτηρισμός υβριδικών ανόργανων/οργανικών νανοδομημένων στερεών καταλυτών

Καραμήτρου, Μέλπω 11 July 2013 (has links)
Η δυνατότητα να συνδυαστούν οι ιδιότητες οργανικών και ανόργανων συστατικών σε ένα μοναδικό νανοδομημένο υβριδικό υλικό αποτελεί μία σημαντική επιστημονική πρόκληση στο σχεδιασμό υλικών, τα οποία μπορούν να εμφανίζουν νέες βελτιωμένες ιδιότητες και να τύχουν προηγμένων εφαρμογών. Τα υβριδικά υλικά, γενικά, μπορούν να ταξινομηθούν σε δύο μεγάλες κατηγορίες: στην κατηγορία I (class I), όπου οι δύο φάσεις συνδυάζονται μέσω ασθενών αλληλεπιδράσεων, και στην κατηγορία II (class II), όπου οι δύο φάσεις είναι σταθερά συνδεδεμένες. Στην παρούσα εργασία διερευνήθηκε η δυνατότητα εφαρμογής νανοδομημένων υβριδικών υλικών ως ετερογενείς καταλύτες στη διεργασία παραγωγής βιοντίζελ από διαφόρων ειδών έλαια. Κατά τη διεργασία αυτή, η οποία καλείται μετεστεροποίηση ή μεθανόλυση, τριγλυκερίδια αντιδρούν με μια αλκοόλη παρουσία ισχυρού οξέος ή βάσης προς παραγωγή εστέρων και γλυκερίνης. Σε πρώτη φάση, εστιάσαμε στη σύνθεση και το χαρακτηρισμό class I και class II υβριδικών οργανικών/ανόργανων υλικών αποτελούμενων από έναν ανόργανο πυρήνα διοξειδίου του πυριτίου (silica), ο οποίος θα περιβάλλεται από πολυμερικές αλυσίδες. Έτσι, στην προσπάθεια σύνθεσης υβριδικών υλικών class I αξιοποιήθηκαν οι πιθανές αλληλεπιδράσεις καθαρών και αμινοτροποποιημένων νανοσωματιδίων διοξειδίου του πυριτίου με υδατοδιαλυτά συμπολυμερή P(SSΗ-co-MA) του στυρενοσουλφονικού οξέος (SSH), με το μηλεϊνικό οξύ (ΜΑ), τα οποία φέρουν τόσο καρβοξυλικές όσο και σουλφονικές ομάδες. Ως αποτέλεσμα του όξινου χαρακτήρα των πολυμερών, τα υβριδικά νανοσωματίδια θα μπορούσαν δυνητικά να χρησιμοποιηθούν ως όξινοι καταλύτες κατά την παραγωγή του βιοντίζελ. Στην προσπάθεια σύνθεσης class II υβριδικών υλικών αξιοποιήθηκε κυρίως ο πολυμερισμός ελευθέρων ριζών μέσω μεταφοράς ατόμου (ATRP), μονομερών όπως στυρενοσουλφονικό νάτριο (SSNa), Ν-ισοπροπυλακρυλαμίδιο (NIPAM) και 2-(διμεθυλαμινο)μεθακρυλικός αιθυλεστέρας (DMAEMA). Για την εκκίνηση του πολυμερισμού χρησιμοποιήθηκαν νανοσωματίδια silica χημικά τροποποιημένα με 3-αμινοπροπυλοτριαιθοξυσιλάνιο και ακολούθως με 2-χλωροπροπιονυλοχλωρίδιο. Εναλλακτικά, χρησιμοποιήθηκαν νανοσωματίδια silica χημικά τροποποιημένα με 3-χλωροπροπυλoτριαιθοξυσιλάνιο (ATRP πολυμερισμός), ή βινυλοτριμεθοξυσιλανιο (πολυμερισμός ελευθέρων ριζών, FRP). Ο χαρακτηρισμός των δειγμάτων κατά περίπτωση έγινε με φασματοσκοπία πυρηνικού μαγνητικού συντονισμού υδρογόνου (1H NMR), φασματοσκοπία υπερύθρου με μετασχηματισμό Fourier (FTIR), θερμοσταθμική ανάλυση (TGA) και τιτλοδότηση οξέος-βάσεως. Στο τελευταίο μέρος της εργασίας ελέγχθηκε η καταλυτική δράση κάποιων εκ των συντεθέντων υλικών στην αντίδραση μεθανόλυσης της τριοξικής γλυκερόλης, χρησιμοποιώντας την τεχνική 1H NMR. Διαπιστώθηκε πως τα αμινοτροποποιημένα νανοσωματιδία silica εμφανίζουν σημαντική καταλυτική δράση. Αντίθετα η ικανότητα των υβριδικών οργανικών/ανόργανων υλικών silica-NH2(B)/P(SSH50-co-MA50), silica-NH2(D)/P(SSH75-co-MA25), και silica-VTMS-PDMAEMA να δρουν ως όξινοι ή βασικοί καταλύτες της ίδιας αντίδρασης είναι πολύ περιορισμένη. / The possibility to combine the properties of organic and inorganic components in a unique nanostructured hybrid material is a major scientific challenge in designing novel materials exhibiting improved properties and finding advanced applications. Hybrid materials generally can be classified into two categories: class I, where the two phases are combined through weak interactions, and class II, where the two phases are covalently connected. The aim of the present study was to develop novel hybrid organic/inorganic nanomaterials, potentially applied as heterogeneous catalysts in the biodiesel production process. In this process, called transesterification or methanolysis, triglycerides from various oils react with an alcohol in the presence of a strong acid or base to produce the respective esters and glycerin. In the first part of this work, we focused on the synthesis and characterization of class I and class II hybrid organic/inorganic nanomaterials consisting of an inorganic silicon dioxide (silica) core and a polymer shell. Thus, for the class I hybrid materials we took advantage of the weak interactions between net or amino-functionalized silica nanoparticles and water-soluble P(SSH-co-MA) copolymers of styrene sulfonic acid (SSH), with maleic acid (MA), carrying both carboxyl and sulfonic groups. These hybrid nanoparticles could potentially be used as acidic catalysts in the production of biodiesel, as a consequence of the acidic nature of the polymer used. For the class II hybrid materials, we mostly applied atom transfer radical polymerization (ATRP) of monomers such as sodium styrene sulfonate (SSNa), N-isopropylacrylamide (NIPAM) and 2-(dimethylamino) ethyl methacrylate (DMAEMA). To initiate the polymerization, silica nanoparticles chemically modified with 3-aminopropyltriethoxysilane and subsequently with 2-chloropropionylchloride were used. Alternatively, we also used silica nanoparticles chemically modified with 3-chloropropyltriethoxysilane (ATRP polymerization), or vinyltrimethoxysilane (free radical polymerization, FRP). In all cases, the products were characterized through a combination of techniques, such as proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and acid-base titration. In the latter part of this work, the catalytic activity of some materials in the methanolysis process of glycerol triacetate was investigated, using the 1H NMR technique. It was found that the aminofunctionalized silica nanoparticles exhibit significant catalytic activity, whereas the ability of the hybrid materials silica-NH2(B)/P(SSH50-co-MA50), silica-NH2(D)/P(SSH75-co-MA25) and silica-VTMS-PDMAEMA to act as acidic or basic catalysts is very limited.
255

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)
256

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid January 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)

Page generated in 0.13 seconds