• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 38
  • 23
  • 15
  • 13
  • 8
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 245
  • 245
  • 37
  • 36
  • 30
  • 30
  • 29
  • 29
  • 24
  • 24
  • 20
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Fundamental Limits on Antenna Size for Frequency and Time Domain Applications

Yang, Taeyoung 15 October 2012 (has links)
As ubiquitous wireless communication becomes part of life, the demand on antenna miniaturization and interference reduction becomes more extreme. However, antenna size and performance are limited by radiation physics, not technology. In order to understand antenna radiation and energy storage mechanisms, classical and alternative viewpoints of radiation are discussed. Unlike the common sense of classical antenna radiation, it is shown that the entire antenna fields contribute to both radiation and energy storage with varying total energy velocity during the radiation process. These observations were obtained through investigating impedance, power, the Poynting vector, and energy velocity of a radiating antenna. Antenna transfer functions were investigated to understand the real-world challenges in antenna design and overall performance. An extended model, using both the singularity expansion method and spherical mode decomposition, is introduced to analyze the characteristics of various antenna types including resonant, frequency-independent, and ultra-wideband antennas. It is shown that the extended model is useful to understand real-world antennas. Observations from antenna radiation physics and transfer function modeling lead to both corrections and extension of the classical fundamental-limit theory on antenna size. Both field and circuit viewpoints of the corrected limit theory are presented. The corrected theory is extended for multi-mode excitation cases and also for ultra-wideband and frequency-independent antennas. Further investigation on the fundamental-limit theory provides new innovations, including a low-Q antenna design approach that reduces antenna interference issues and a generalized approach for designing an antenna close to the theoretical-size limit. Design examples applying these new approaches with simulations and measurements are presented. The extended limit theory and developed antenna design approaches will find many applications to optimize compact antenna solutions with reduced near-field interactions. / Ph. D.
102

Modeling, Analysis, and Experimental Validation of an Electric Linear Series Elastic Actuator for an Exoskeleton

Pang, Zhoubao 26 June 2020 (has links)
Exoskeletons and humanoid robots require high-power, low-weight, and back-driveable actuators. This paper describes the design and analysis of a high-force linear series elastic actuator for a lower body exoskeleton. The actuator is powered by two motors and utilize a liquid cooling system to increase its maximum continuous torque. The actuator is capable of outputting a maximum continuous force of 4800N and a maximum speed of 0.267 m/s with a maximum continuous motor current of 18A. The Titanium leaf spring was used in the actuator to provide compliance. The spring has a median stiffness of 587 N/mm with standard deviation of 38 N/mm, validated by experiments. Dynamic model was created to analyze the normal modes and can be used for developing model-based controllers. / Master of Science / Compliant Linear actuators with ball screw have become popular for humanoids robots and exoskeleton. The use of ball screw lead to high efficiency, high gear ratio and high back-drivability. The compliance or the ''softness'' of the actuator comes from Titanium leaf spring, which can storage energy during gait cycle and protect motor and the ball screw from impacts of walking. The custom liquid cooling system improves the force density for the actuator. Beam theory analysis, heat transfer analysis, and dynamics analysis were performed to provides insights for the actuator system.
103

Technical Note: Impact on detective quantum efficiency of edge angle determination method by International Electrotechnical Commission methodology for cardiac x-ray image detectors

Gislason-Lee, Amber J., Tunstall, C.M., Kengyelics, S.K., Cowen, A.R., Davies, A.G. 02 July 2015 (has links)
No / Cardiac x-ray detectors are used to acquire moving images in real-time for angiography and interventional procedures. Detective quantum efficiency (DQE) is not generally measured on these dynamic detectors; the required “for processing” image data and control of x-ray settings have not been accessible. By 2016, USA hospital physicists will have the ability to measure DQE and will likely utilize the International Electrotechnical Commission (IEC) standard for measuring DQE of dynamic x-ray imaging devices. The current IEC standard requires an image of a tilted tungsten edge test object to obtain modulation transfer function (MTF) for DQE calculation. It specifies the range of edge angles to use; however, it does not specify a preferred method to determine this angle for image analysis. The study aimed to answer the question “will my choice in method impact my results?” Four different established edge angle determination methods were compared to investigate the impact on DQE. Methods: Following the IEC standard, edge and flat field images were acquired on a cardiac flat-panel detector to calculate MTF and noise power spectrum, respectively, to determine DQE. Accuracy of the methods in determining the correct angle was ascertained using a simulated edge image with known angulations. Precision of the methods was ascertained using variability of MTF and DQE, calculated via bootstrapping. Results: Three methods provided near equal angles and the same MTF while the fourth, with an angular difference of 6%, had a MTF lower by 3% at 1.5 mm−1 spatial frequency and 8% at 2.5 mm−1; corresponding DQE differences were 6% at 1.5 mm−1 and 17% at 2.5 mm−1; differences were greater than standard deviations in the measurements. Conclusions: DQE measurements may vary by a significant amount, depending on the method used to determine the edge angle when following the IEC standard methodology for a cardiac x-ray detector. The most accurate and precise methods are recommended for absolute assessments and reproducible measurements, respectively. / Funded by Philips Healthcare, NL, and a University of Leeds Career Development Bursery.
104

Short-Term Forecasting of Power Flows over Major Pacific Northwestern Interties: Using Box and Jenkins ARIMA Methodology

Paretkar, Piyush S. 17 November 2008 (has links)
The deregulation of the Electricity Sector in US has led to a tremendous increase in the inter-regional wholesale electricity trade between neighboring utilities or regions. For instance, the generation deficit regions may choose to import power from surplus regions; thus the wholesale electricity market prices in the regions are also affected by the dynamics of its electricity trade with other regions. Valuable insights into such imports/exports ahead of time have become crucial market intelligence for the various academicians and the market players associated with the industry. In this thesis, the task of short-term forecasting of the power flows over three major transmission interties of the Pacific Northwest region, namely the Pacific AC Intertie, the Pacific DC Intertie and the Northern Intertie, is successfully accomplished. The Pacific AC and the Pacific DC interties connect the Pacific Northwest region of US with the state of California. The Northern Intertie is the only intertie connecting the British Columbia region in Canada with the Pacific Northwest US. Box-Jenkins ARIMA (Auto Regressive Integrated Moving Average) and Transfer function methodologies are used as the statistical tools to identify the forecasting models in this thesis. The data requirement for all of the models is restricted to publicly available data. / Master of Science
105

Phase Shift Control: Application and Performance Limitations With Respect to Thermoacoustic Instabilities

Webber, Michael L. 06 January 2004 (has links)
Lean premixed fuel-air conditions in large gas turbines are used to improve efficiency and reduce emissions. These conditions give rise to large undamped pressure oscillations at the combustor's natural frequencies which reduce the turbine's longevity and reliability. Active control of the pressure oscillations, called thermoacoustic instabilities, has been sought as passive abatement of these instabilities does not provide adequate damping and is often impractical on a large scale. Phase shift control of the instabilities is perhaps the simplest and most popular technique employed but often does not provide good performance in that controller induced secondary instabilities are generated with increasing loop gain. This thesis investigates the general underlying cause of the secondary instabilities and shows that high average group delay through the frequency region of the instability is the root of the problem. This average group delay is then shown to be due not only the controller itself but can also be associated with other components and inherent characteristics of the control loop such as actuators and time delay, respectively. An "optimum" phase shift controller, consisting of an appropriate shift in phase and a low order, wide bandwidth bandpass filter, is developed for a Rijke tube combustor and shown to closely match the response of an LQG controller designed only for system stabilization. Both the optimal phase shifter and the LQG controller are developed based on a modified model of the thermoacoustic loop which takes into account the change in density of the combustion reactants at the flame location. Additionally, the system model is coupled with a model of the control loop and then validated by comparison of simulated results to experimental results using nearly identical controllers. / Master of Science
106

Proposta de simulação computacional para avaliação de sistemas de imagem radiológica pelo método das funções de transferência. / A computer simulation proposal for radiographic systems evaluation by the transfer functions method.

Schiabel, Homero 12 June 1992 (has links)
A presente tese demonstra, a partir da avaliação convencional pelo método das Funções de Transferência de sistemas de imagem radiológica, que é necessário obter imagens de fenda em diversas orientações no campo para que essa análise tenha um significado mais real no caso de sistemas não isotrópicos. Isso provém da não linearidade na variação entre as FTMs obtidas para diversas direções 0 e 90&#176C relativas ao eixo do tubo de raios-X. Essa verificação, entretanto, representa um sério problema prático, pois indica um aumento no grau de complexidade de um método que, embora considerado o mais preciso pela maioria dos pesquisadores, tem sido utilizado apenas por laboratórios muito bem equipados. Assim, visando solucionar esse problema, esta tese propõe um novo método de simulação por computador que calcula a FEL e a FTM devidas ao ponto focal, dispensando, portanto, todo o complexo aparato experimental convencionalmente utilizado, o que contribui para tornar acessível à avaliação pelas funções de transferência a qualquer unidade radiológica. Por fim, faz parte desse trabalho também uma investigação do significado físico das variações registradas entre as FTMs e um estudo formal desenvolvido acerca dos conceitos da característica de campo e da magnificação lateral. / From the conventional evaluation by the radiological systems Transfer Functions, this work shows that it is necessary to obtain slit images at several field orientations so that this annalysis has a more real significance for non-isotropic systems. This is achieved from the non-linearity on the variations among the MTFs obtained in several directions between 0 and 90&#176C relative to the X-ray tube axis. This notification, however, represents a serious practical matter, because it shows an increase on the complexity of a method which has been used just by well structured laboratories, although many researchers have considered it the most accurate. Hence, in order to solve this problem, we present a new computer simulation method which calculates the LSF and the MTF due to the focal spot, without all the conventional complex experimental apparatus. This makes the evaluation by the transfer functions suitable to any radiological unit. Finally, it is also part of this work an investigation of the physical meaning of the variations among the MTFs and a formal study about the field characteristics and the lateral magnification concepts.
107

Proposta de simulação computacional para avaliação de sistemas de imagem radiológica pelo método das funções de transferência. / A computer simulation proposal for radiographic systems evaluation by the transfer functions method.

Homero Schiabel 12 June 1992 (has links)
A presente tese demonstra, a partir da avaliação convencional pelo método das Funções de Transferência de sistemas de imagem radiológica, que é necessário obter imagens de fenda em diversas orientações no campo para que essa análise tenha um significado mais real no caso de sistemas não isotrópicos. Isso provém da não linearidade na variação entre as FTMs obtidas para diversas direções 0 e 90&#176C relativas ao eixo do tubo de raios-X. Essa verificação, entretanto, representa um sério problema prático, pois indica um aumento no grau de complexidade de um método que, embora considerado o mais preciso pela maioria dos pesquisadores, tem sido utilizado apenas por laboratórios muito bem equipados. Assim, visando solucionar esse problema, esta tese propõe um novo método de simulação por computador que calcula a FEL e a FTM devidas ao ponto focal, dispensando, portanto, todo o complexo aparato experimental convencionalmente utilizado, o que contribui para tornar acessível à avaliação pelas funções de transferência a qualquer unidade radiológica. Por fim, faz parte desse trabalho também uma investigação do significado físico das variações registradas entre as FTMs e um estudo formal desenvolvido acerca dos conceitos da característica de campo e da magnificação lateral. / From the conventional evaluation by the radiological systems Transfer Functions, this work shows that it is necessary to obtain slit images at several field orientations so that this annalysis has a more real significance for non-isotropic systems. This is achieved from the non-linearity on the variations among the MTFs obtained in several directions between 0 and 90&#176C relative to the X-ray tube axis. This notification, however, represents a serious practical matter, because it shows an increase on the complexity of a method which has been used just by well structured laboratories, although many researchers have considered it the most accurate. Hence, in order to solve this problem, we present a new computer simulation method which calculates the LSF and the MTF due to the focal spot, without all the conventional complex experimental apparatus. This makes the evaluation by the transfer functions suitable to any radiological unit. Finally, it is also part of this work an investigation of the physical meaning of the variations among the MTFs and a formal study about the field characteristics and the lateral magnification concepts.
108

Calibration and adjustment of coherence scanning interferometry

Mandal, Rahul January 2015 (has links)
Coherence scanning interferometry (CSI) is a non-contacting optical technique which is widely used for the measurement of surface topography. CSI combines the lateral resolution of a high power microscope with the axial resolution of an interferometer. As with any other metrology instrument, CSI is calibrated to define measurement uncertainty. The traditional calibration procedure, as recommended by instrument manufacturers, consists of calibration of the axial and lateral scales of the instrument. Although calibration in this way provides uncertainties for the measurement of rectilinear artefacts, it does not give information about tilt-related uncertainty. If an object with varying slope is measured, significant errors are observed as the surface gradient increases. In this thesis a novel approach of calibration and adjustment for CSI using a spherical object is introduced. This new technique is based on three dimensional linear filtering theory. According to linear theory, smooth surface measurement in CSI can be represented as a linear filtering operation, where the filter is characterised either by point spread function (PSF) in space domain or by transfer function (TF) in spatial frequency domain. The derivation of these characteristics usually involves making the Born approximation, which is strictly only applicable for weakly scattering objects. However, for the case of surface scattering and making use of the Kirchhoff approximation, the system can be considered linear if multiple scattering is assumed to be negligible. In this case, the object is replaced by an infinitely thin foil-like object, which follows the surface topography and, therefore, is called the foil model of the surface. For an ideal aberration free instrument, the linear characteristics are determined by the numerical aperture of the objective lens and the bandwidth of the source. However, it is found that the PSF and TF of a commercial instrument can depart significantly from theory and result in a significant measurement error. A new method, based on modified inverse filter to compensate the phase and amplitude-related errors in the system PSF/TF, is demonstrated. Finally, a method based on de-warping to compensate distortion is discussed. The application of the linear theory as well as modified inverse filter is dependent on the assumption of the shift invariance. As distortion introduces a field dependent magnification, the presence of distortion for CSI with relatively large field of view, restricts the applicability of the linear theory. Along with this restriction, distortion also introduces erroneous height measurement for objects with gradients. This new approach, based on de-warping, resolves the problems associated with distortion.
109

Restauração de imagens mamográficas digitais utilizando o filtro de Wiener no domínio de Anscombe e o filtro inverso da MTF no domínio da frequência / Digital mamographic images restoration using Wiener filter in Anscombe domain and inverse MTF filter in frequency domain

Romualdo, Larissa Cristina dos Santos 07 October 2009 (has links)
Este trabalho tem por objetivo o desenvolvimento de uma nova técnica de pré-processamento de imagens mamográficas digitais para melhorar o desempenho dos esquemas computacionais de auxílio ao diagnóstico (CAD) e para auxiliar na detecção precoce do câncer de mama. O método proposto efetua uma restauração nas imagens mamográficas utilizando, em uma primeira etapa, a transformada de Anscombe e o filtro de Wiener para redução do ruído quântico. Posteriormente, é utilizado o filtro inverso da função de transferência de modulação (MTF) do sistema de imagem para realce das estruturas de interesse na mamografia, como as microcalcificações, que podem ser um indicativo de câncer de mama em seu estágio inicial. Imagens mamográficas restauradas pelo método proposto foram utilizadas na avaliação de um esquema CAD para detecção automática de microcalcificações. Os resultados mostraram que o desempenho do esquema CAD apresentou uma melhora significativa quando imagens restauradas foram utilizadas, mesmo para imagens de mamas densas, que resultam normalmente em baixa taxa de detecção devido ao baixo contraste. / This work aims to developing a new technique for pre-processing digital mammographic images in order to improve the performance of computer aided-diagnosis schemes (CAD) and to assist in early detection of breast cancer. The proposed method performs a restoration in mammographic images using in a first step, the Anscombe transform and Wiener filtering to reduce image quantum noise. Subsequently, it was used the inverse modulation transfer function filtering (MTF) considering the imaging system to enhance structures of interest in mammography, such as microcalcifications, which may be an indicative of breast cancer in its early stage. Mammographic images restored by the proposed method were used in the evaluation of a CAD scheme for automatic detection of microcalcifications. The results showed that the performance of the CAD scheme had a significant improvement when restored images were used, even for images of dense breasts, which often results in low detection rate due to low contrast.
110

Investigação de qualidade para comparação de sistemas de imagem em radiologia odontológica / Quality investigation in order to compare odontologic radiographic image systems

Costa, Hamilton Baptista da 28 November 2005 (has links)
O presente trabalho de pesquisa trata da investigação de parâmetros de qualidade aplicados a sistemas de imagem em radiologia odontológica. Para isso, foram levantados parâmetros propostos pela Portaria nº 453 de 1998 da Secretaria de Vigilância Sanitária do Ministério da Saúde em aparelhos de raios X odontológicos e determinadas funções de transferência de modulação (FTM), como método para a avaliação da resolução espacial de sistemas de radiologia odontológica digital. Com base nesses dados, comparou-se três sistemas digitais diretos (DIGORA, DENOPTIX e CygnusRay) e um sistema digital indireto, baseado no scanner Umax PowerLook 1120. Essa comparação evidenciou, para esse caso, a melhor qualidade, em termos de resolução espacial, do sistema indireto estudado e a relativa equivalência dos sistemas digitais entre si, quando comparados em suas resoluções máximas (em número de pontos por polegada). Também foi possível validar o uso do método de simulação computacional para a obtenção da FTM de sistemas radiográficos odontológicos / This work has investigated quality parameters applied to odontologic radiographic image systems. In order to achieve this purpose, parameters related to the Portaria nº 453 of 1998 of Secretaria de Vigilância Sanitária do Ministério da Saúde have been checked and modulation transfer functions (MTF) have been determined. These information has been used to compare three differents direct radiographic images systems (DIGORA, DENOPTIX e CygnusRay) and one indirect, based on scanner Umax PowerLook 1120. The obtained data has showed, in this case, the better performance, in terms of spatial resolution, of the indirect system and the relative equivalency of the direct systems, when configured with the maximum resolution (in term of dpi). The work has validated the computer simulation process in order to generate the MTF of odontologic radiographic image systems

Page generated in 0.0858 seconds