• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 10
  • 10
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 324
  • 324
  • 145
  • 122
  • 116
  • 99
  • 73
  • 66
  • 62
  • 58
  • 57
  • 54
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Human Activity Recognition Based on Transfer Learning

Pang, Jinyong 06 July 2018 (has links)
Human activity recognition (HAR) based on time series data is the problem of classifying various patterns. Its widely applications in health care owns huge commercial benefit. With the increasing spread of smart devices, people have strong desires of customizing services or product adaptive to their features. Deep learning models could handle HAR tasks with a satisfied result. However, training a deep learning model has to consume lots of time and computation resource. Consequently, developing a HAR system effectively becomes a challenging task. In this study, we develop a solid HAR system using Convolutional Neural Network based on transfer learning, which can eliminate those barriers.
42

DEFT guessing: using inductive transfer to improve rule evaluation from limited data

Reid, Mark Darren, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Algorithms that learn sets of rules describing a concept from its examples have been widely studied in machine learning and have been applied to problems in medicine, molecular biology, planning and linguistics. Many of these algorithms used a separate-and-conquer strategy, repeatedly searching for rules that explain different parts of the example set. When examples are scarce, however, it is difficult for these algorithms to evaluate the relative quality of two or more rules which fit the examples equally well. This dissertation proposes, implements and examines a general technique for modifying rule evaluation in order to improve learning performance in these situations. This approach, called Description-based Evaluation Function Transfer (DEFT), adjusts the way rules are evaluated on a target concept by taking into account the performance of similar rules on a related support task that is supplied by a domain expert. Central to this approach is a novel theory of task similarity that is defined in terms of syntactic properties of rules, called descriptions, which define what it means for rules to be similar. Each description is associated with a prior distribution over classification probabilities derived from the support examples and a rule's evaluation on a target task is combined with the relevant prior using Bayes' rule. Given some natural conditions regarding the similarity of the target and support task, it is shown that modifying rule evaluation in this way is guaranteed to improve estimates of the true classification probabilities. Algorithms to efficiently implement Deft are described, analysed and used to measure the effect these improvements have on the quality of induced theories. Empirical studies of this implementation were carried out on two artificial and two real-world domains. The results show that the inductive transfer of evaluation bias based on rule similarity is an effective and practical way to improve learning when training examples are limited.
43

Combining classifier and cluster ensembles for semi-supervised and transfer learning

Acharya, Ayan 09 July 2012 (has links)
Unsupervised models can provide supplementary soft constraints to help classify new, "target" data since similar instances in the target set are more likely to share the same class label. Such models can also help detect possible differences between training and target distributions, which is useful in applications where concept drift may take place, as in transfer learning settings. This contribution describes two general frameworks that take as input class membership estimates from existing classifiers learnt on previously encountered "source" data, as well as a set of cluster labels from a cluster ensemble operating solely on the target data to be classified, and yield a consensus labeling of the target data. One of the proposed frameworks admits a wide range of loss functions and classification/clustering methods and exploits properties of Bregman divergences in conjunction with Legendre duality to yield a principled and scalable approach. The other approach is built on probabilistic mixture models and provides additional flexibility of distributed computation that is useful when the target data cannot be gathered in a single place for privacy or security concerns. A variety of experiments show that the proposed frameworks can yield results substantially superior to those provided by popular transductive learning techniques or by naively applying classifiers learnt on the original task to the target data. / text
44

Transfer learning with Gaussian processes

Skolidis, Grigorios January 2012 (has links)
Transfer Learning is an emerging framework for learning from data that aims at intelligently transferring information between tasks. This is achieved by developing algorithms that can perform multiple tasks simultaneously, as well as translating previously acquired knowledge to novel learning problems. In this thesis, we investigate the application of Gaussian Processes to various forms of transfer learning with a focus on classification problems. This process initiates with a thorough introduction to the framework of Transfer learning, providing a clear taxonomy of the areas of research. Following that, we continue by reviewing the recent advances on Multi-task learning for regression with Gaussian processes, and compare the performance of some of these methods on a real data set. This review gives insights about the strengths and weaknesses of each method, which acts as a point of reference to apply these methods to other forms of transfer learning. The main contributions of this thesis are reported in the three following chapters. The third chapter investigates the application of Multi-task Gaussian processes to classification problems. We extend a previously proposed model to the classification scenario, providing three inference methods due to the non-Gaussian likelihood the classification paradigm imposes. The forth chapter extends the multi-task scenario to the semi-supervised case. Using labeled and unlabeled data, we construct a novel covariance function that is able to capture the geometry of the distribution of each task. This setup allows unlabeled data to be utilised to infer the level of correlation between the tasks. Moreover, we also discuss the potential use of this model to situations where no labeled data are available for certain tasks. The fifth chapter investigates a novel form of transfer learning called meta-generalising. The question at hand is if, after training on a sufficient number of tasks, it is possible to make predictions on a novel task. In this situation, the predictor is embedded in an environment of multiple tasks but has no information about the origins of the test task. This elevates the concept of generalising from the level of data to the level of tasks. We employ a model based on a hierarchy of Gaussian processes, in a mixtures of expert sense, to make predictions based on the relation between the distributions of the novel and the training tasks. Each chapter is accompanied with a thorough experimental part giving insights about the potentials and the limits of the proposed methods.
45

Bayesian Models for Multilingual Word Alignment

Östling, Robert January 2015 (has links)
In this thesis I explore Bayesian models for word alignment, how they can be improved through joint annotation transfer, and how they can be extended to parallel texts in more than two languages. In addition to these general methodological developments, I apply the algorithms to problems from sign language research and linguistic typology. In the first part of the thesis, I show how Bayesian alignment models estimated with Gibbs sampling are more accurate than previous methods for a range of different languages, particularly for languages with few digital resources available—which is unfortunately the state of the vast majority of languages today. Furthermore, I explore how different variations to the models and learning algorithms affect alignment accuracy. Then, I show how part-of-speech annotation transfer can be performed jointly with word alignment to improve word alignment accuracy. I apply these models to help annotate the Swedish Sign Language Corpus (SSLC) with part-of-speech tags, and to investigate patterns of polysemy across the languages of the world. Finally, I present a model for multilingual word alignment which learns an intermediate representation of the text. This model is then used with a massively parallel corpus containing translations of the New Testament, to explore word order features in 1001 languages.
46

DEFT guessing: using inductive transfer to improve rule evaluation from limited data

Reid, Mark Darren, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Algorithms that learn sets of rules describing a concept from its examples have been widely studied in machine learning and have been applied to problems in medicine, molecular biology, planning and linguistics. Many of these algorithms used a separate-and-conquer strategy, repeatedly searching for rules that explain different parts of the example set. When examples are scarce, however, it is difficult for these algorithms to evaluate the relative quality of two or more rules which fit the examples equally well. This dissertation proposes, implements and examines a general technique for modifying rule evaluation in order to improve learning performance in these situations. This approach, called Description-based Evaluation Function Transfer (DEFT), adjusts the way rules are evaluated on a target concept by taking into account the performance of similar rules on a related support task that is supplied by a domain expert. Central to this approach is a novel theory of task similarity that is defined in terms of syntactic properties of rules, called descriptions, which define what it means for rules to be similar. Each description is associated with a prior distribution over classification probabilities derived from the support examples and a rule's evaluation on a target task is combined with the relevant prior using Bayes' rule. Given some natural conditions regarding the similarity of the target and support task, it is shown that modifying rule evaluation in this way is guaranteed to improve estimates of the true classification probabilities. Algorithms to efficiently implement Deft are described, analysed and used to measure the effect these improvements have on the quality of induced theories. Empirical studies of this implementation were carried out on two artificial and two real-world domains. The results show that the inductive transfer of evaluation bias based on rule similarity is an effective and practical way to improve learning when training examples are limited.
47

Mathematical Theories of Interaction with Oracles

Yang, Liu 01 October 2013 (has links)
No description available.
48

A Study of Boosting based Transfer Learning for Activity and Gesture Recognition

January 2011 (has links)
abstract: Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer. / Dissertation/Thesis / M.S. Computer Science 2011
49

Domain similarity metrics for predicting transfer learning performance

Bäck, Jesper January 2019 (has links)
The lack of training data is a common problem in machine learning. One solution to thisproblem is to use transfer learning to remove or reduce the requirement of training data.Selecting datasets for transfer learning can be difficult however. As a possible solution, thisstudy proposes the domain similarity metrics document vector distance (DVD) and termfrequency-inverse document frequency (TF-IDF) distance. DVD and TF-IDF could aid inselecting datasets for good transfer learning when there is no data from the target domain.The simple metric, shared vocabulary, is used as a baseline to check whether DVD or TF-IDF can indicate a better choice for a fine-tuning dataset. SQuAD is a popular questionanswering dataset which has been proven useful for pre-training models for transfer learn-ing. The results were therefore measured by pre-training a model on the SQuAD datasetand fine-tuning on a selection of different datasets. The proposed metrics were used tomeasure the similarity between the datasets to see whether there was a correlation betweentransfer learning effect and similarity. The results found a clear relation between a smalldistance according to the DVD metric and good transfer learning. This could prove usefulfor a target domain without training data, a model could be trained on a big dataset andfine-tuned on a small dataset that is very similar to the target domain. It was also foundthat even small amount of training data from the target domain can be used to fine-tune amodel pre-trained on another domain of data, achieving better performance compared toonly training on data from the target domain.
50

Deep learning for medical report texts

Nelsson, Mikael January 2018 (has links)
Data within the medical sector is often stored as free text entries. This is especially true for report texts, which are written after an examination. To be able to automatically gather data from these texts they need to be analyzed and classified to show what findings the examinations had. This thesis compares three state of the art deep learning approaches to classify short medical report texts. This is done for two types of examinations, so the concept of transfer learning plays a role in the evaluation. An optimal model should learn concepts that are applicable for more than one type of examinations, since we can expect the texts to be similar. The two data set from the examinations are also of different sizes, and both have an uneven distribution among the target classes. One of the models is based on techniques traditionally used for language processing using deep learning. The two other models are based on techniques usually used for image recognition and classification. The latter models proves to be the best across the different metrics, not least in the sense of transfer learning as they improve the results when learning from both types of examinations. This becomes especially apparent for the lowest frequent class from the smaller data set as none of the models correctly predict this class without using transfer learning.

Page generated in 0.0986 seconds