• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 10
  • 10
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 324
  • 324
  • 145
  • 122
  • 116
  • 99
  • 73
  • 66
  • 62
  • 58
  • 57
  • 54
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Transfer Learning for BioImaging and Bilingual Applications

January 2015 (has links)
abstract: Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2015
52

A probabilistic framework of transfer learning- theory and application

January 2015 (has links)
abstract: Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2015
53

Domain Adaptive Computational Models for Computer Vision

January 2017 (has links)
abstract: The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations. The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2017
54

Learning Transferable Data Representations Using Deep Generative Models

January 2018 (has links)
abstract: Machine learning models convert raw data in the form of video, images, audio, text, etc. into feature representations that are convenient for computational process- ing. Deep neural networks have proven to be very efficient feature extractors for a variety of machine learning tasks. Generative models based on deep neural networks introduce constraints on the feature space to learn transferable and disentangled rep- resentations. Transferable feature representations help in training machine learning models that are robust across different distributions of data. For example, with the application of transferable features in domain adaptation, models trained on a source distribution can be applied to a data from a target distribution even though the dis- tributions may be different. In style transfer and image-to-image translation, disen- tangled representations allow for the separation of style and content when translating images. This thesis examines learning transferable data representations in novel deep gen- erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar- ial methods and cross-domain weight sharing in a neural network to extract trans- ferable representations. These transferable interpretations can then be decoded into the original image or a similar image in another domain. The Explicit Disentangling Network (EDN) utilizes generative methods to disentangle images into their core at- tributes and then segments sets of related attributes. The EDN can separate these attributes by controlling the ow of information using a novel combination of losses and network architecture. This separation of attributes allows precise modi_cations to speci_c components of the data representation, boosting the performance of ma- chine learning tasks. The effectiveness of these models is evaluated across domain adaptation, style transfer, and image-to-image translation tasks. / Dissertation/Thesis / Masters Thesis Computer Science 2018
55

Building Adaptive Computational Systems for Physiological and Biomedical Data

January 2013 (has links)
abstract: In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data. / Dissertation/Thesis / Ph.D. Computer Science 2013
56

Nonnegative matrix factorization for transfer learning / Factorisation matricielle non-négative pour l'apprentissage par transfert

Redko, Ievgen 26 November 2015 (has links)
L’apprentissage par transfert consiste `a utiliser un jeu de taches pour influencerl’apprentissage et améliorer les performances sur une autre tache.Cependant, ce paradigme d’apprentissage peut en réalité gêner les performancessi les taches (sources et cibles) sont trop dissemblables. Un défipour l’apprentissage par transfert est donc de développer des approchesqui détectent et évitent le transfert négatif des connaissances utilisant tr`espeu d’informations sur la tache cible. Un cas particulier de ce type d’apprentissageest l’adaptation de domaine. C’est une situation o`u les tachessources et cibles sont identiques mais dans des domaines différents. Danscette thèse, nous proposons des approches adaptatives basées sur la factorisationmatricielle non-figurative permettant ainsi de trouver une représentationadéquate des données pour ce type d’apprentissage. En effet, unereprésentation utile rend généralement la structure latente dans les donnéesexplicite, et réduit souvent la dimensionnalité´e des données afin que d’autresméthodes de calcul puissent être appliquées. Nos contributions dans cettethèse s’articulent autour de deux dimensions complémentaires : théoriqueet pratique.Tout d’abord, nous avons propose deux méthodes différentes pour résoudrele problème de l’apprentissage par transfert non supervise´e bas´e sur destechniques de factorisation matricielle non-négative. La première méthodeutilise une procédure d’optimisation itérative qui vise `a aligner les matricesde noyaux calculées sur les bases des données provenant de deux taches.La seconde représente une approche linéaire qui tente de découvrir unplongement pour les deux taches minimisant la distance entre les distributionsde probabilité correspondantes, tout en préservant la propriété depositivité.Nous avons également propos´e un cadre théorique bas´e sur les plongementsHilbert-Schmidt. Cela nous permet d’améliorer les résultats théoriquesde l’adaptation au domaine, en introduisant une mesure de distancenaturelle et intuitive avec de fortes garanties de calcul pour son estimation.Les résultats propos´es combinent l’etancheite des bornes de la théoried’apprentissage de Rademacher tout en assurant l’estimation efficace deses facteurs cl´es.Les contributions théoriques et algorithmiques proposées ont et évaluéessur un ensemble de données de référence dans le domaine avec des résultatsprometteurs. / The ability of a human being to extrapolate previously gained knowledge to other domains inspired a new family of methods in machine learning called transfer learning. Transfer learning is often based on the assumption that objects in both target and source domains share some common feature and/or data space. If this assumption is false, most of transfer learning algorithms are likely to fail. In this thesis we propose to investigate the problem of transfer learning from both theoretical and applicational points of view.First, we present two different methods to solve the problem of unsuper-vised transfer learning based on Non-negative matrix factorization tech-niques. First one proceeds using an iterative optimization procedure that aims at aligning the kernel matrices calculated based on the data from two tasks. Second one represents a linear approach that aims at discovering an embedding for two tasks that decreases the distance between the cor-responding probability distributions while preserving the non-negativity property.We also introduce a theoretical framework based on the Hilbert-Schmidt embeddings that allows us to improve the current state-of-the-art theo-retical results on transfer learning by introducing a natural and intuitive distance measure with strong computational guarantees for its estimation. The proposed results combine the tightness of data-dependent bounds de-rived from Rademacher learning theory while ensuring the efficient esti-mation of its key factors.Both theoretical contributions and the proposed methods were evaluated on a benchmark computer vision data set with promising results. Finally, we believe that the research direction chosen in this thesis may have fruit-ful implications in the nearest future.
57

Application of the German Traffic Sign Recognition Benchmark on the VGG16 network using transfer learning and bottleneck features in Keras

Persson, Siri January 2018 (has links)
Convolutional Neural Networks (CNNs) are successful tools in image classification. CNNs are inspired by the animal visual cortex using a similar connectivity pattern as between neurons. The purpose of this thesis is to create a classifier, using transfer learning, that manages to classify images of traffic signs from the German Traffic Sign Recognition Benchmark (GTSRB) with good accuracy and to improve the performance further by tuning the hyperparameters. The pre-trained CNN used is the VGG16 network from the paper "Very deep convolutional networks for large-scale image recognition". The result showed that the VGG16 network got an accuracy of 74.5\% for the hyperparameter set where the learning rate was 1e-6, the batch size was 15 and the dropout rate 0.3. The conclusion was that transfer learning using the bottleneck features is a good tool for building a classifier with only a small amount of training data available and that the results probably could be further improved using more real data or data augmentation both for training and testing and by tuning more of the hyperparameters in the network.
58

Zero Shot Learning for Visual Object Recognition with Generative Models

January 2020 (has links)
abstract: Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories. Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area. / Dissertation/Thesis / Masters Thesis Computer Science 2020
59

Transfer Learning for Machine Diagnostics

Al Chalati, Abdul Aziz, Naveed, Syed Asad January 2020 (has links)
Fault detection and diagnostics are crucial tasks in condition-based maintenance. Industries nowadays are in need of fault identification in their machines as early as possible to save money and take precautionary measures in case of fault occurrence. Also, it is beneficial for the smooth interference in the manufacturing process in which it avoids sudden malfunctioning. Having sufficient training data for industrial machines is also a major challenge which is a prerequisite for deep neural networks to train an accurate prediction model. Transfer learning in such cases is beneficial as it can be helpful in adapting different operating conditions and characteristics which is the casein real-life applications. Our work is focused on a pneumatic system which utilizes compressed air to perform operations and is used in different types of machines in the industrial field. Our novel contribution is to build upon a Domain Adversarial Neural Network (DANN) with a unique approach by incorporating ensembling techniques for diagnostics of air leakage problem in the pneumatic system under transfer learning settings. Our approach of using ensemble methods for feature extraction shows up to 5 % improvement in the performance. We have also performed a comparative analysis of our work with conventional machine and deep learning methods which depicts the importance of transfer learning and we have also demonstrated the generalization ability of our model. Lastly, we also mentioned a problem specific contribution by suggesting a feature engineering approach, such that it could be implemented on almost every pneumatic system and could potentially impact the prediction result positively. We demonstrate that our designed model with domain adaptation ability will be quite useful and beneficial for the industry by saving their time and money and providing promising results for this air leakage problem in the pneumatic system.
60

Multilingual Dependency Parsing of Uralic Languages : Parsing with zero-shot transfer and cross-lingual models using geographically proximate, genealogically related, and syntactically similar transfer languages

Erenmalm, Elsa January 2020 (has links)
One way to improve dependency parsing scores for low-resource languages is to make use of existing resources from other closely related or otherwise similar languages. In this paper, we look at eleven Uralic target languages (Estonian, Finnish, Hungarian, Karelian, Livvi, Komi Zyrian, Komi Permyak, Moksha, Erzya, North Sámi, and Skolt Sámi) with treebanks of varying sizes and select transfer languages based on geographical, genealogical, and syntactic distances. We focus primarily on the performance of parser models trained on various combinations of geographically proximate and genealogically related transfer languages, in target-trained, zero-shot, and cross-lingual configurations. We find that models trained on combinations of geographically proximate and genealogically related transfer languages reach the highest LAS in most zero-shot models, while our highest-performing cross-lingual models were trained on genealogically related languages. We also find that cross-lingual models outperform zero-shot transfer models. We then select syntactically similar transfer languages for three target languages, and find a slight improvement in the case of Hungarian. We discuss the results and conclude with suggestions for possible future work.

Page generated in 0.1682 seconds