• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sistemas inteligentes e wavelets para previsão de vento e geração eólica

OLIVEIRA, Josinaldo Bezerra de 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T17:37:49Z (GMT). No. of bitstreams: 2 arquivo5358_1.pdf: 2371419 bytes, checksum: 9e35f2575d714f7e248df41f035db1da (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Vários estudos já comprovaram que o potencial eólico brasileiro, principalmente no nordeste, onde os ventos têm uma importante característica de complementaridade em relação às vazões do rio São Francisco, pode contribuir significativamente para o suprimento de energia elétrica. O aproveitamento deste potencial eólico aumentaria a capacidade de geração e a diversificação da matriz energética nacional e, consequentemente, diminuiria os riscos de desabastecimento de energia elétrica. Entretanto, o uso das forças dos ventos para produção de energia produz alguns inconvenientes, tais como, a incertezas na geração e a dificuldade no planejamento e operação do sistema elétrico. Portanto, é imprescindível à aplicação de ferramentas ou técnicas capazes de predizer a energia a ser fornecida por estas fontes. No Brasil, os investimentos em fontes alternativas iniciaram-se de forma tímida e tardia, inclusive em geração eólica. Do ponto de vista de modelos de previsões de ventos e geração eólica, isto não é diferente. Sendo assim, este trabalho propõe e desenvolve vários modelos de previsões a partir de técnicas de Redes Neurais Artificiais; Análise de Multiresolução de sinais usando Transformada Wavelet; e Modelos Estatísticos. Os modelos aqui propostos foram ajustados para realizar previsões com horizontes variáveis de até vinte e quatro horas. Estes serviram para uma análise comparativa através dos resultados encontrados durante os testes dos mesmos, que ajudou a identificar as vantagens e desvantagens de cada técnica. Além disto, estes poderão ser implementados e desenvolvidos para operação, mitigando alguns dos inconvenientes da geração eólica de energia
2

Wavelets na compactação e processamento de sinais de distúrbios em sistemas de potência para classificação via redes neurais artificiais

LIRA, Milde Maria da Silva January 2004 (has links)
Made available in DSpace on 2014-06-12T17:35:41Z (GMT). No. of bitstreams: 2 arquivo6994_1.pdf: 1435653 bytes, checksum: 4e1bdb7a745c9aaae76de273132b51f9 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004 / Neste trabalho, são desenvolvidos novos tipos de Wavelets para análise de sinais, um Algoritmo de Compactação e um Sistema de Classificação de sinais de tensões com distúrbio. A compactação do sinal é realizada eliminando-se os coeficientes wavelets cujos módulos estão abaixo de um determinado limiar de corte. Os resultados para sinais reais obtidos em registradores digitais forneceram altas taxas de compactação, tipicamente em torno de 82%, demonstrando a potencialidade deste método. Na classificação, o sinal de tensão é pré-processado via Wavelets e em seguida submetido a uma redução dimensional por meio da ferramenta estatística, Análises de Componentes Principais, e finalmente é submetido à Rede Neural tipo Multilayer Perceptrons - MLP, que indicará o tipo de distúrbio presente no sinal. Cada rede implementada foi treinada com uma base de conhecimento, cujos atributos foram constituídos dos coeficientes wavelets de aproximação, ou de detalhes, ou de ambos. Na combinação das Redes Neurais, em cada um dos seis nós de saída, aplicou-se a média entre as três saídas das redes individuais. A decisão final do classificador corresponde à saída combinada de maior valor. A técnica de combinação de modelos diferentes na classificação mostra excelentes resultados ao corrigir os casos mal classificados pelas redes individuais. O percentual de acerto da combinação da rede treinada com os coeficientes de detalhes com a aquela treinada com os coeficientes de aproximação para um conjunto de teste formado por 306 padrões foi de 99,3%, enquanto que na rede individual treinada com ambos coeficientes, esse índice foi de 96,4%. Estes resultados demonstram a superioridade do Sistema de Classificação baseado na combinação de redes com arquiteturas diferentes

Page generated in 0.0831 seconds