Spelling suggestions: "subject:"transformada wavelet""
1 |
Sistemas inteligentes e wavelets para previsão de vento e geração eólicaOLIVEIRA, Josinaldo Bezerra de 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T17:37:49Z (GMT). No. of bitstreams: 2
arquivo5358_1.pdf: 2371419 bytes, checksum: 9e35f2575d714f7e248df41f035db1da (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Vários estudos já comprovaram que o potencial eólico brasileiro,
principalmente no nordeste, onde os ventos têm uma importante característica de
complementaridade em relação às vazões do rio São Francisco, pode contribuir
significativamente para o suprimento de energia elétrica. O aproveitamento deste potencial
eólico aumentaria a capacidade de geração e a diversificação da matriz energética nacional
e, consequentemente, diminuiria os riscos de desabastecimento de energia elétrica.
Entretanto, o uso das forças dos ventos para produção de energia produz alguns
inconvenientes, tais como, a incertezas na geração e a dificuldade no planejamento e
operação do sistema elétrico. Portanto, é imprescindível à aplicação de ferramentas ou
técnicas capazes de predizer a energia a ser fornecida por estas fontes. No Brasil, os
investimentos em fontes alternativas iniciaram-se de forma tímida e tardia, inclusive em
geração eólica. Do ponto de vista de modelos de previsões de ventos e geração eólica, isto
não é diferente. Sendo assim, este trabalho propõe e desenvolve vários modelos de
previsões a partir de técnicas de Redes Neurais Artificiais; Análise de Multiresolução de
sinais usando Transformada Wavelet; e Modelos Estatísticos. Os modelos aqui propostos
foram ajustados para realizar previsões com horizontes variáveis de até vinte e quatro
horas. Estes serviram para uma análise comparativa através dos resultados encontrados
durante os testes dos mesmos, que ajudou a identificar as vantagens e desvantagens de
cada técnica. Além disto, estes poderão ser implementados e desenvolvidos para operação,
mitigando alguns dos inconvenientes da geração eólica de energia
|
2 |
Wavelets na compactação e processamento de sinais de distúrbios em sistemas de potência para classificação via redes neurais artificiaisLIRA, Milde Maria da Silva January 2004 (has links)
Made available in DSpace on 2014-06-12T17:35:41Z (GMT). No. of bitstreams: 2
arquivo6994_1.pdf: 1435653 bytes, checksum: 4e1bdb7a745c9aaae76de273132b51f9 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2004 / Neste trabalho, são desenvolvidos novos tipos de Wavelets para análise de
sinais, um Algoritmo de Compactação e um Sistema de Classificação de sinais de tensões
com distúrbio. A compactação do sinal é realizada eliminando-se os coeficientes wavelets
cujos módulos estão abaixo de um determinado limiar de corte. Os resultados para sinais
reais obtidos em registradores digitais forneceram altas taxas de compactação, tipicamente
em torno de 82%, demonstrando a potencialidade deste método. Na classificação, o sinal
de tensão é pré-processado via Wavelets e em seguida submetido a uma redução
dimensional por meio da ferramenta estatística, Análises de Componentes Principais, e
finalmente é submetido à Rede Neural tipo Multilayer Perceptrons - MLP, que indicará o
tipo de distúrbio presente no sinal. Cada rede implementada foi treinada com uma base de
conhecimento, cujos atributos foram constituídos dos coeficientes wavelets de
aproximação, ou de detalhes, ou de ambos. Na combinação das Redes Neurais, em cada
um dos seis nós de saída, aplicou-se a média entre as três saídas das redes individuais. A
decisão final do classificador corresponde à saída combinada de maior valor. A técnica de
combinação de modelos diferentes na classificação mostra excelentes resultados ao corrigir
os casos mal classificados pelas redes individuais. O percentual de acerto da combinação
da rede treinada com os coeficientes de detalhes com a aquela treinada com os coeficientes
de aproximação para um conjunto de teste formado por 306 padrões foi de 99,3%,
enquanto que na rede individual treinada com ambos coeficientes, esse índice foi de
96,4%. Estes resultados demonstram a superioridade do Sistema de Classificação baseado
na combinação de redes com arquiteturas diferentes
|
Page generated in 0.0831 seconds