• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transformation Induced Fatigue of Ni-Rich NiTi Shape Memory Alloy Actuators

Schick, Justin Ryan 2009 December 1900 (has links)
In this work the transformation induced fatigue of Ni-rich NiTi shape memory alloys (SMAs) was investigated. The aerospace industry is currently considering implementing SMA actuators into new applications. However, before any new applications can be put into production they must first be certified by the FAA. Part of this certification process includes the actuator fatigue life. In this study, as-received and polished at dogbone SMA specimens underwent transformation induced fatigue testing at constant loading. The constant applied loading ranged from 100 MPa to 200 MPa. Specimens were thermally cycled through complete actuation (above Af to below Mf ) by Joule heating and environmental cooling. There were three cooling environments studied: liquid, gaseous nitrogen and vortex cooled air. It was shown that polished specimens had fatigue lives that were two to four times longer than those of as-received specimens. Test environment was also found to have an effect on fatigue life. Liquid cooling was observed to be corrosive, while the gaseous nitrogen and vortex air cooling were observed to be non-corrosive. The two non-corrosive cooling environments performed similarly with specimen fatigue lives that were twice that of specimens fatigue tested in the corrosive cooling environment. Transformation induced fatigue testing of polished specimens in a non-corrosive environment at 200 MPa had an average fatigue life of 14400 actuation cycles; at 150 MPa the average fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles. For all specimens constant actuation from the beginning of testing until failure was observed, without the need for training. Finally, a microstructural study showed that the Ni3Ti precipitates in the material were one of the causes of crack initiation and propagation in the actuators.
2

Actuation Fatigue of Shape Memory Alloys

Calhoun, Christopher 2012 May 1900 (has links)
A testing method was developed to cycle quickly and repeatably Ni60Ti40 (wt. %) SMA specimens through temperature-induced transformation while under constant stress until failure. Previous works have shown fatigue cracks to initiate in or around Ni3Ti precipitates during repeated thermal cycling in this highly Ni-rich alloy. Actuation fatigue tests were conducted on specimens produced from material from different material suppliers and direction relative to cold-rolling. The specimens were placed under a constant applied stress of 200 MPa and thermally cycled through complete transformation. Some of the specimens were homogenized for 1 hour in a vacuum furnace and the rest were homogenized for 2 hours in a nitrogen furnace, and were all aged for 20 hours. It was seen during actuation fatigue testing that specimens homogenized for two hours had higher actuation strain, accumulated more irrecoverable strain and had longer actuation fatigue lives compared to specimens homogenized for one hour. Another trend observed was that specimens with the greatest amount of accumulated irrecoverable strain, which was caused predominately by transformation induced plasticity, had the longest actuation fatigue lives. Postmortem analysis showed a change in cracking behavior with precipitate orientation. Cracks initiated inside the Ni3Ti precipitates oriented parallel to the loading direction and at the interface between the precipitate and matrix when perpendicular. Two dimensional plane stress finite element simulations of a linear elastic ellipsoidal precipitate inside a non-linear transforming SMA matrix were conducted to explain further the change in cracking behavior by analyzing the stress fields in and around the precipitates. The results showed the stress inside the precipitate was greater when oriented parallel than perpendicular to the loading direction, which explains the observed change in cracking behavior. Another objective of actuation fatigue testing is to generate useful data to create predictive tools for future SMA actuator designs. A work-based method has been developed using actuation fatigue results found in literature. The method is shown to fit accurately data found in literature to a curve with only two material parameters. The results of this method show promise to predict accurately the actuation fatigue life of SMA components, however more testing is necessary to validate completely the method.
3

Characterization and Modeling of Transformation Induced Fatigue of Shape Memory Alloy Actuators

Bertacchini, Olivier Walter 2009 December 1900 (has links)
The main focus of this research is the transformation induced fatigue behavior of shape memory alloy (SMA) actuators undergoing thermally induced martensitic phase transformation. The recent development of aerospace applications employing shape memory alloys (SMAs) has expanded the need for fatigue life characterization and modeling. Lightweight, compact and with a great work output, SMAs are ideal materials for actuated structural components. However, fatigue life becomes a key factor in applications such as commercial airplanes. Therefore, it is necessary to not only perform fatigue testing but also to investigate the causes of fatigue failure. As a new class of materials, SMAs have unique characteristics and require novel test methodologies to conduct repeatable and reliable fatigue testing. For this research, two materials are being investigated: TiNiCu and Ni-rich NiTi. The experiments performed on the first selected alloy, i.e. TiNiCu SMA, explore three major parameters: the applied stress level, the amount of actuation, and the corrosive nature of the environment. Experimental results show that SMAs undergoing transformation induced fatigue exhibit a low-cycle fatigue behavior and the measurement of the accumulated plastic strain at failure is associated to a Manson-Coffin type failure criterion. Investigations conducted on the post-mortem microstructure showed evidence of a multiphysical coupling between corrosion and cyclic phase transformation, from which a novel cyclic damage mechanism is proposed and explained using the micromechanical shear lag model accounting for actuation and accumulated plastic strains. Thereafter, based upon the identified failure mechanism and considering damage accumulation through crack formation, a stress renormalization procedure is proposed in combination with the Miner’s rule to predict the reduction of number of cycles to failure due to cyclic phase transformation and corrosion. A direct method is first presented and the predictions show good agreement with experimental results. However, both corrosion and corrosion-free fatigue data are required. Therefore, a new approach is proposed: the inverse Miner’s rule, which requires corrosion fatigue data only to predict corrosion-free life. The new and attractive properties of the selected second alloy, i.e. Ni-rich NiTi SMA, have revived the motivation of the aerospace industry to design SMA actuators. One particular property is cyclic stability generated by precipitation hardening mechanism using precipitates. However, are also precipitates due to high Nickel content (60 wt.% or 55 at.%). Parameters such as processing, heat treatments, size effects, surface quality and environment are investigated. Thermomechanical response and fatigue life are discussed and the greatest impact is found to come from specimen surface quality. Finally, a detailed fractography presents the different microstructural aspects of the fatigue damage and concludes to a precipitation driven fatigue failure mechanism cause by precipitates.

Page generated in 0.1667 seconds